Proof Complexity

Olaf Beyersdorff

School of Computing
University of Leeds, UK

ANU Logic Summer School 2017
Outline of the Course
Introduction to Propositional Proof Complexity
 Proof Systems
 The Cook-Reckhow Programme
Tree-Like Resolution
 Tree-like Resolution and Satisfiability Algorithms
 The Game of Pudlák and Impagliazzo
Separating Tree-like and DAG-like Resolution
 Tree-like vs. DAG-like Proof Systems
 Pebbling Games
DAG-like Resolution and Cutting Planes
Proof complexity of further logics
 Modal and intuitionistic logics
 QBF proof complexity
Frege and Stronger Systems
 Bounded-Depth Frege and Frege
 Extensions of Frege
 Optimal Systems
Proof Search – Automatizability
Bounded Arithmetic
Proof Systems

Definition (Cook, Reckhow 79)

A proof system for a language L is a function f with $\text{rng}(f) = L$. If $f(w) = x$, then w is called an f-proof of $x \in L$.

- correctness: $\text{rng}(f) \subseteq L$
- completeness: $L \subseteq \text{rng}(f)$
- efficiency: proofs should be easy to check, i.e. f should be easy to compute.

Most research in proof complexity has studied propositional proof systems where $L = \text{TAUT}$.
A First Example: Truth Tables

A proof system for TAUT

\[TT(\alpha, \varphi) = \begin{cases}
\varphi & \text{if } \alpha \text{ is a truth table for } \varphi \text{ with all entries } 1 \\
 p \lor \neg p & \text{otherwise.}
\end{cases} \]

Why is this not a good proof system?

- Most proofs are exponentially long in the size of the formula.
- We look for proof systems with shorter proofs.
The Most Studied Proof System: Resolution

- Introduced by Blake 1937, Davis & Putnam 1960, and Robinson 1965
- Resolution proofs operate with clauses.
- Resolution proofs are refutations.

Definition
Let C and D be clauses with $p \in C$ and $\neg p \in D$. The **Resolution rule** applied to C and D yields the clause $(C \setminus \{p\}) \cup (D \setminus \{\neg p\})$.

Notation: $$\frac{C \quad D}{(C \setminus \{p\}) \cup (D \setminus \{\neg p\})}$$
Resolution Derivations

Definition
Let \(\Gamma \) be a set of clauses. A Resolution derivation of a clause \(C \) from \(\Gamma \) is a sequence

\[
C_1, \ldots, C_k = C
\]

of clauses such that for all \(i = 1, \ldots, k \):

1. \(C_i \in \Gamma \) or
2. there exist \(1 \leq j_1 \leq j_2 < i \) with

\[
\frac{C_{j_1}}{C_{j_2}} \frac{C_{j_2}}{C_i}.
\]
Resolution Refutations

Definition
A Resolution refutation of Γ is a Resolution derivation of the empty clause \square from Γ.

Example
$\Gamma = \{\{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\}\}$

A Resolution refutation of Γ is:

\[
\begin{array}{c}
\{p, q\} & \{\neg p, q\} \\
\hline
\{q\}
\end{array} \quad \quad
\begin{array}{c}
\{\neg p, \neg q\} & \{p, \neg q\} \\
\hline
\{\neg q\}
\end{array}
\]
Resolution in the Cook-Reckhow Framework

Resolution is a proof system for tautologies in DNF

\[
Res(C_1, \ldots, C_k, \varphi) = \begin{cases}
\varphi & \text{if } C_1, \ldots, C_k = \square \text{ is a Resolution refutation of the clause set for } \neg \varphi \\
 p \lor \neg p & \text{otherwise.}
\end{cases}
\]

Resolution can be extended to a proof system for all tautologies by transforming formulas into DNF.
A Strong System: Frege

Axioms

\[
\begin{align*}
 p_1 &\rightarrow (p_2 \rightarrow p_1) \\
 (p_1 \rightarrow p_2) &\rightarrow (p_1 \rightarrow (p_2 \rightarrow p_3)) \rightarrow (p_1 \rightarrow p_3) \\
 p_1 &\rightarrow p_1 \lor p_2 \\
 p_2 &\rightarrow p_1 \lor p_2 \\
 (p_1 \rightarrow p_3) &\rightarrow (p_2 \rightarrow p_3) \rightarrow (p_1 \lor p_2 \rightarrow p_3) \\
 (p_1 \rightarrow p_2) &\rightarrow (p_1 \rightarrow \neg p_2) \rightarrow \neg p_1 \\
 \neg \neg p_1 &\rightarrow p_1 \\
p_1 \land p_2 &\rightarrow p_1 \\
p_1 \land p_2 &\rightarrow p_2 \\
p_1 &\rightarrow p_2 \rightarrow p_1 \land p_2
\end{align*}
\]

Modus Ponens

\[
\begin{array}{c}
p_1 \\
p_1 \rightarrow p_2
\end{array} \Rightarrow
\begin{array}{c}
p_2
\end{array}
\]
A Frege proof of a formula φ is a sequence

$$(\varphi_1, \ldots, \varphi_n = \varphi)$$

of propositional formulas such that for $i = 1, \ldots, n$:

- φ_i is a substitution instance of an axiom, or
- φ_i was derived by modus ponens from φ_j, φ_k with $j, k < i$.
Restrictions and Extensions of Frege Systems

Bounded-depth Frege
Allow only formulas of logical depth d in the proof for a given constant d.

Extended Frege EF
Abbreviations for complex formulas: $p \equiv \varphi$, where p is a new propositional variable.

Frege systems with substitution SF
Substitution rule: $\frac{\varphi}{\sigma(\varphi)}$
for arbitrary substitutions σ

Extensions of EF
Let Φ be a polynomial-time computable set of tautologies.
$EF + \Phi$: Φ as axiom schemes
Reductions between Proof Systems

Definition (Cook, Reckhow 79, Krajíček, Pudlák 89)

Let f and g be proof systems for L.

- f simulates g, if for any g-proof w there is an f-proof w' of length $|w'| = |w|^{O(1)}$ s.t. $f(w') = g(w)$.
- If w' is computable from w in polynomial time, then f p-simulates g.
- f and g are (p-)equivalent if they (p-)simulate each other.

Definition (Krajíček, Pudlák 89)

A proof system f for L is (p-)optimal if f (p-)simulates every proof system for L.
Simulations Between Proof Systems

Theorem (Cook, Reckhow 79)

All Frege systems are polynomially equivalent.

Theorem (Krajíček, Pudlák 89)

Every proof system is simulated by a proof system of the form $EF + \Phi$.

Problem (Krajíček, Pudlák 89)

Do optimal proof systems exist?
The Propositional Sequent Calculus

- Historically one of the first and best analyzed proof systems [Gentzen 35]
- Widely used for propositional and first-order logic
- We describe the propositional sequent calculus LK.
- The basic objects of the sequent calculus are sequents

$$\varphi_1, \ldots, \varphi_m \vdash \psi_1, \ldots, \psi_k .$$

- Formally, these are ordered pairs of two sequences of propositional formulas separated by the symbol \vdash.
- The sequence $\varphi_1, \ldots, \varphi_m$ is called the antecedent and ψ_1, \ldots, ψ_k is called the succedent.
An assignment α satisfies a sequent $\Gamma \vdash \Delta$ if

$$\alpha \models \bigvee_{\varphi \in \Gamma} \neg \varphi \lor \bigvee_{\psi \in \Delta} \psi .$$

$\vdash \Delta$ abbreviates $\emptyset \vdash \Delta$.

$\Gamma \vdash$ abbreviates $\Gamma \vdash \emptyset$.

Sequents of the form

$$A \vdash A, \quad 0 \vdash, \quad \vdash 1$$

are called initial sequents.
Rules of \(LK \)

\[
\frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \quad \text{(weakening)}
\]

\[
\frac{\Gamma_1, A, B, \Gamma_2 \vdash \Delta}{\Gamma_1, B, A, \Gamma_2 \vdash \Delta} \quad \text{(exchange)}
\]

\[
\frac{\Gamma_1, A, A, \Gamma_2 \vdash \Delta}{\Gamma_1, A, \Gamma_2 \vdash \Delta} \quad \text{(contraction)}
\]

\[
\frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \quad \text{(\neg introduction)}
\]

\[
\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta} \quad \text{(contraction)}
\]

\[
\frac{\Gamma \vdash \Delta, A, B, \Delta_2}{\Gamma \vdash \Delta_1, B, A, \Delta_2} \quad \text{(exchange)}
\]

\[
\frac{\Gamma \vdash \Delta_1, A, B, \Delta_2}{\Gamma \vdash \Delta_1, A, \Delta_2} \quad \text{(contraction)}
\]

\[
\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta} \quad \text{(contraction)}
\]
Rules of LK (cont’d.)

\land introduction rules:

\[
\frac{A, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} \quad \frac{A, \Gamma \vdash \Delta}{B \land A, \Gamma \vdash \Delta} \quad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \land B} \quad \frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B}
\]

\lor introduction rules:

\[
\frac{A, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \quad \frac{B, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \quad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \quad \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, B \lor A}
\]

\[
\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta} \quad \frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} \quad (\text{cut rule})
\]
Definition
As in Frege systems, an \textit{LK-proof} of a propositional formula \(\varphi \) is a derivation of the sequent

\[\vdash \varphi \]

from initial sequents by the above rules.

Proposition (Cook, Reckhow 79)

\textit{Frege systems and the propositional sequent calculus LK are polynomially equivalent}.
Polynomially Bounded Proof Systems

Polynomial Bounds on Proofs
A proof system f for L is \textit{polynomially bounded} if there exists a polynomial p such that every $x \in L$ has an f-proof of size $\leq p(|x|)$.

Examples

- The standard proof system for SAT is polynomially bounded:
 \[
 \text{sat}(\alpha, \varphi) = \begin{cases}
 \varphi & \text{if } \alpha \text{ is a satisfying assignment for } \varphi \\
 p & \text{otherwise.}
 \end{cases}
 \]

- The truth-table system is \textit{not} a polynomially bounded proof system for TAUT.
The Cook-Reckhow Theorem

Question
Is there a polynomially bounded proof system for TAUT?

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system if and only if $L \in \text{NP}$.
The Cook-Reckhow Theorem

Theorem (Cook, Reckhow 79)

A language \(L \) *has a polynomially bounded proof system if and only if* \(L \in \text{NP} \).

Proof. \(\Rightarrow \)

Let \(P \) be a polynomially bounded proof system with bounding polynomial \(p \). Consider the following algorithm:

1. **Input:** a string \(x \)
2. **guess** \(\pi \in \Sigma^{\leq p(|x|)} \)
3. **IF** \(P(\pi) = x \) **THEN** accept **ELSE** reject
The Cook-Reckhow Theorem

Theorem (Cook, Reckhow 79)

A language L has a polynomially bounded proof system if and only if $L \in \text{NP}$.

Proof. \Leftarrow

Let $L \in \text{NP}$ and let M be a nondeterministic polynomial time Turing machine M that accepts L. Let the polynomial p bound the running time of M. Then

$$P(\pi) = \begin{cases} x & \text{if } \pi \text{ codes an accepting computation of } M(x) \\ x_0 & \text{otherwise} \end{cases}$$

with fixed $x_0 \in L$ is a proof system for L which is polynomially bounded by p. \square
The Cook-Reckhow Theorem

Question
Is there a polynomially bounded proof system for TAUT?

Theorem (Cook, Reckhow 79)
A language L has a polynomially bounded proof system if and only if $L \in \text{NP}$.

For propositional proof systems
$TAUT$ has a polynomially bounded proof system if and only if $\text{NP} = \text{coNP}$.
The Cook-Reckhow Programme

Separate NP from coNP (and hence P and NP) by showing super-polynomial lower bounds to the size of proofs in all propositional proof systems.

Showing lower bounds for a system P means finding an infinite family θ_n of propositional tautologies s.t.
- $|\theta_n| = n^{O(1)}$;
- θ_n requires super-polynomial size proofs in P.
 - Better: ... exponential size proofs.

Even better

- Find a sequence of polynomially constructible formulas which require long proofs.
- This is usually the case: take θ_n as the propositional formalization of some combinatorial principle.
- Find a large set of formulas (e.g. random 3-CNF) which require long proofs.
The Cook-Reckhow Programme

Separate NP from coNP (and hence P and NP) by showing super-polynomial lower bounds to the size of proofs in all propositional proof systems.

Progress in this programme

- Haken (1985): exponential lower bound to the proof size in Resolution for the pigeonhole principle
- Lower bounds for algebraic and geometric proof systems:
 - Cutting Planes
 - Polynomial Calculus
 - Nullstellensatz
Techniques and Barriers

Techniques for lower bounds

- feasible interpolation [Krajíček 97]
- size-width trade-offs [Ben-Sasson, Wigderson 01]
- game-theoretic techniques [Pudlák, Buss, Impagliazzo, ...]
- proof complexity generators [Krajíček, Alekhnovich et al.]

The current barrier
Show lower bounds for Frege systems
Cutting Planes

- Cutting Planes uses the idea of **linear programming**.
- As in Resolution, CP is a refutation system that works with clauses.
- Clauses are translated into linear inequalities.
The Translation

- Clauses are translated into linear inequalities
 \[a_1 p_1 + \cdots + a_n p_n \geq b \]
 (1)
 with integer coefficients \(a_1, \ldots, a_n \) and \(b \).
- Propositional variables \(p \) are identically represented by integer variables \(p \).
- \(\neg p \) is translated to \(1 - p \).
- A clause
 \[C = \{ l_1, \ldots, l_n \} \]
 with literals \(l_i = p_i \) or \(l_i = \neg p_i \) is translated into
 \[f_1 + \cdots + f_n \geq 1 \]
 with
 \[f_i = \begin{cases}
 p_i & \text{if } l_i = p_i \\
 1 - p_i & \text{if } l_i = \neg p_i
 \end{cases} \]
 for \(i = 1, \ldots, n \).
- To get an inequality of the form (1), constants are moved to the right hand side.
1. Let $\Gamma = \{C_1, \ldots, C_k\}$ be a set of clauses in variables p_1, \ldots, p_n.

2. As axioms in CP we use the translations of clauses C_1, \ldots, C_k together with

\[p_i \geq 0, \quad -p_i \geq -1 \quad i = 1, \ldots, n . \]
Rules of CP

1. **Addition:**

\[
\begin{align*}
 a_1p_1 + \cdots + a_n p_n & \geq b \\
 a_1'p_1 + \cdots + a_n' p_n & \geq b'
\end{align*}
\]

\[
\frac{(a_1 + a_1')p_1 + \cdots + (a_n + a_n')p_n \geq b + b'}{(a_1 + a_1')p_1 + \cdots + (a_n + a_n')p_n \geq b + b'}
\]

2. **Multiplication:**

\[
\begin{align*}
 a_1 p_1 + \cdots + a_n p_n & \geq b \\
 ca_1 p_1 + \cdots + ca_n p_n & \geq cb
\end{align*}
\]

with an arbitrary integer \(c > 0 \).

3. **Division:**

\[
\begin{align*}
 ca_1 p_1 + \cdots + ca_n p_n & \geq b \\
 a_1 p_1 + \cdots + a_n p_n & \geq \left\lfloor \frac{b}{c} \right\rfloor
\end{align*}
\]

with an arbitrary integer \(c > 0 \).
A CP refutation of a set of clauses \(\Gamma \) is a CP derivation of \(0 \geq 1 \) from the axioms corresponding to \(\Gamma \).

- Easy to see: CP p-simulates Resolution.
- The converse is false.
- Frege systems p-simulate CP [Goerdt 91].
Simulations between important propositional proof systems

optimal proof system?

Extended Frege

Frege

AC0-Frege

Resolution

Tree-Resolution

Truth table

Cutting Planes

Polynomial Calculus

PCR

not polynomially bounded
Summary

Proof Complexity

- is at the intersection of logic and complexity.
- uses concepts and intuition from algebra, geometry, …

Main Objective

study lengths of proofs

Connections to other areas

- Separation of complexity classes
- Analysis of SAT algorithms
- Proof search – Automatizability
- First-Order Logic – Bounded Arithmetic
- Proving lower bounds is hard!
Tree-like Resolution
Tree-like Resolution

Refutational system for unsatisfiable CNF

- Resolution rule: \[\frac{C \cup \{x\} \quad D \cup \{\neg x\}}{C \cup D} \]
- tree-like refutations: each derived clause is used at most once

\[
\begin{align*}
\{x_1, x_2\} & \quad \{\neg x_1, x_2\} & \quad \{\neg x_1, \neg x_2\} & \quad \{x_1, \neg x_2\} \\
\{x_2\} & \quad \{\neg x_2\}
\end{align*}
\]

Proof size

- Number of clauses in the proof, i.e. nodes in the trees
- DPLL algorithms on unsatisfiable CNF produce tree-like Resolution refutations.
- Tree-like Resolution is not polynomially bounded.
Tree-like Resolution

- A Resolution refutation of F can be depicted as a directed graph were vertices are labeled with the clauses of the refutation and a Resolution step

\[
\frac{C \quad D}{E}
\]

yields edges (C, E) and (D, E).

- As this graph is acyclic, we also refer to the general Resolution system as dag-like Resolution.

- If the graph is a tree we call the refutation tree like. When we allow only tree-like refutations we get the tree-like Resolution system.

- In tree-like Resolution, each derived clause can be used at most once as a prerequisite of the Resolution rule.
An Equivalent Model: Boolean Decision Trees

Definition

- A boolean decision tree for F is a binary tree where inner nodes are labeled with variables from F and leafs are labeled with clauses from F.
- Each path in the tree corresponds to a partial assignment where a variable x gets value 0 or 1 according to whether the path branches left or right at the node labeled with x.
- In the tree, each path α must lead to a clause which is falsified by the assignment corresponding to α.
Boolean Decision Trees and the Search Problem

- A boolean decision tree solves the search problem for F:
 - given an assignment α,
 - find a clause from F falsified by α.

- Each tree-like Resolution refutation of F yields a boolean decision tree for F and vice versa, where the size of the Resolution proof equals the number of nodes in the decision tree.
DPLL Algorithms

The DPLL algorithm was developed by Davis, Logemann and Loveland using an earlier algorithm of Davis and Putnam.

Notation

- Let F be a formula and α a partial assignment.
- By $F|\alpha$ we denote the simplified formula which results from substituting constants 0/1 for variables in the domain of α.
Idea of the DPLL Algorithm

- Input: Formula F as a set of clauses
- Check if F is trivially satisfiable (F is the empty clause set) or trivially unsatisfiable (F contains the empty clause)
- Choose a variable x
- Consider $F|_{x=0}$ and $F|_{x=1}$
- If F is satisfiable, then at least one of the formulas $F|_{x=0}$ or $F|_{x=1}$ is satisfiable.
- Alternatively: F is unsatisfiable if both formulas $F|_{x=0}$ and $F|_{x=1}$ are unsatisfiable.
The DPLL Algorithm

1. \(\text{DPLL}(F, \alpha) \)
2. IF \(F|_{\alpha} = 0 \) THEN Return unsatisfiable
3. IF \(F|_{\alpha} = 1 \) THEN Return \(\alpha \)
4. choose a variable \(x \) in \(F|_{\alpha} \) and \(a \in \{0, 1\} \)
5. \(\beta := \text{DPLL}(F, \alpha \cup [x := a]) \)
6. IF \(\beta \neq \text{"unsatisfiable"} \) THEN Return \(\beta \)
7. ELSE Return \(\text{DPLL}(F, \alpha \cup [x := (1 - a)]) \)
Improvements of the DPLL algorithm

Unit propagation

If a clause is a unit clause, i.e. it contains only a single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this literal true. Thus, no choice is necessary. In practice, this often leads to deterministic cascades of units, thus avoiding a large part of the naive search space.

Example

- \(p \lor q, \neg p \lor r, \neg r \lor \neg s, p \)
- set \(p = 1 \) and obtain \(r, \neg r \lor \neg s \)
- set \(r = 1 \) and obtain \(\neg s \)
- set \(s = 0 \) and obtain the empty clause set which is trivially satisfiable
Improvements of the DPLL algorithm

Pure literal elimination
If a propositional variable occurs with only one polarity in the formula, it is called pure. Pure literals can always be assigned in a way that makes all clauses containing them true. Thus, these clauses do not constrain the search anymore and can be deleted.

Example

▸ $p \lor q, \neg p \lor r, \neg r \lor \neg s, p$
▸ q occurs only positively, set $q = 1$ and obtain $\neg p \lor r, \neg r \lor \neg s, p$
▸ s occurs only negatively, set $s = 0$ and obtain $\neg p \lor r, p$
▸ r occurs only positively, set $r = 1$ and obtain p
▸ p occurs only positively, set $p = 1$ and obtain the empty clause set which is trivially satisfiable
The DPLL Algorithm

1. DPLL(F)
2. IF F is empty THEN Return satisfiable
3. IF F contains the empty clause THEN Return unsatisfiable
4. for every unit clause l in F
 \[F := \text{unit-propagate}(l, F) \]
5. for every literal l that occurs pure in F
 \[F := \text{pure-literal-assign}(l, F) \]
6. choose a variable x in F and $a \in \{0, 1\}$
7. IF DPLL($F | x := a$) = “satisfiable” THEN Return satisfiable
8. ELSE Return DPLL($F | x := (1 - a)$)
Modern SAT solvers

build on DPLL and enhance it by further features

- backjumping: non-chronological backtracking
- clause learning: adding new clauses from conflicts
- restarts
- different heuristics for choosing the branching literals and for learning clauses
- implementation tuning

Active community

yearly SAT competitions, affiliated with the SAT conference
SAT Solvers

- DPLL algorithms (combined with further techniques and heuristics) are the basis for most modern SAT solvers.
- What is the running time of these algorithms?
- The worst-case running time of DPLL algorithms is exponential in the length of the formula.
- Why?
- On unsatisfiable formulas, the DPLL algorithm produces a Boolean decision tree (e.g. a tree-like Resolution refutation) of the formula.
- We show a lower bound for tree-like Resolution.
A Game for Tree-like Resolution

Prover-Delayer games [Pudlák & Impagliazzo 00]

- Let F be a set of clauses in n variables x_1, \ldots, x_n.
- Prover and Delayer build a (partial) assignment to x_1, \ldots, x_n.
- The game is over as soon as the partial assignment falsifies a clause from F.
- In each round, Prover suggests a variable x_i, and Delayer either chooses a value 0/1 for x_i or leaves the choice to Prover.
- If Prover sets the value, then Delayer gets 1 point.
- Prover can always win the game on unsatisfiable formulas, but how many points can Delayer earn?
Scores and Lengths of Proofs

Idea
Good strategies for Delayer for a unsatisfiable CNF \(F \) yield lower bounds for tree-like Resolution refutations of \(F \).

Theorem (Pudlák & Impagliazzo 00)

Let \(F \) be an unsatisfiable formula in CNF.
If \(F \) has a tree-like Resolution refutation of size at most \(S \),
then Delayer gets at most \(\log S \) points in each Prover-Delayer game played on \(F \).

Corollary

If Delayer scores \(p \) points during a game on \(F \), then tree-like Resolution refutations of \(F \) are of size \(2^{\Omega(p)} \).
The Proof

- Let F be an unsatisfiable CNF in variables x_1, \ldots, x_n and let Π be a tree-like Resolution refutation of F.
- Prover and Delayer play a game on F where they successively construct an assignment α.
- Let α_i be the partial assignment constructed after i rounds of the game.
- By p_i we denote the number of Delayer’s points after i rounds.
- Let Π_{α_i} be the sub-tree of Π which has as its root the node reached in Π along the path specified by α_i.

Invariant during the game

$$|\Pi_{\alpha_i}| \leq \frac{|\Pi|}{2p_i} \text{ for any round } i.$$
Invariant during the game

Invariant

\[|\Pi_{\alpha_i}| \leq \frac{|\Pi|}{2p_i} \text{ for any round } i. \]

The invariant yields the theorem

- At the end of the game a contradiction has been reached and the size of \(\Pi_{\alpha} \) is 1.
- By the invariant

\[1 \leq \frac{|\Pi|}{2p_{\alpha}}, \]

yielding \(p_{\alpha} \leq \log |\Pi| \).
Invariant during the game

Invariant

\[|\Pi_{\alpha_i}| \leq \frac{|\Pi|}{2p_i} \text{ for any round } i. \]

Beginning

In the beginning of the game, \(\Pi_{\alpha_0} \) is the full tree and the Delayer has 0 points. Therefore the invariant holds.

Inductive step

If the Delayer chooses the value, then \(p_{i+1} = p_i \) and hence

\[|\Pi_{\alpha_{i+1}}| \leq |\Pi_{\alpha_i}| \leq \frac{|\Pi|}{2p_i} = \frac{|\Pi|}{2p_{i+1}}. \]
Invariant during the game

Inductive step

- If Delayer defers the choice to Prover, then Prover chooses the value \(x \) which leads to the smaller subtree, i.e. Prover sets \(x = 0 \) if

\[
|\prod_{\alpha_i \cup \{x=0\}}| \leq \frac{|\prod_{\alpha_i}|}{2},
\]

otherwise he sets \(x = 1 \).

- Thus, if Prover’s choice is \(x = j \) with \(j \in \{0, 1\} \), then

\[
|\prod_{\alpha_{i+1}}| = |\prod_{\alpha_i \cup \{x=j\}}| \leq \frac{|\prod_{\alpha_i}|}{2} \leq \frac{|\prod|}{2 \cdot 2^{p_i}} = \frac{|\prod|}{2^{p_{i+1}}} = \frac{|\prod|}{2^{p_{i+1}}}.
\]
The Pigeonhole Principle

- PHP_n^m with $m > n$ uses variables $x_{i,j}$ with $i \in [m]$ and $j \in [n]$,
- $x_{i,j}$ indicates that pigeon i goes into hole j.
- PHP_n^m consists of the clauses

$$\bigvee_{j \in [n]} x_{i,j} \quad \text{for all pigeons } i \in [m]$$

and

$$\neg x_{i_1,j} \lor \neg x_{i_2,j}$$

for all choices of distinct pigeons $i_1, i_2 \in [m]$ and holes $j \in [n]$.
We prove that PHP_{n}^{n+1} is hard for tree-like Resolution.

Showing the lower bound by the Prover-Delayer game requires a suitable Delayer strategy.

Theorem

Any tree-like Resolution refutation of PHP_{n}^{m} for $m > n$ has size $2^{\Omega(n)}$.

Delayer’s Strategy

Let us say that a hole j is occupied if there exists $i \in [m]$ such that $x_{i,j}$ was assigned to 1 in the game.

Delayer’s strategy

If Prover asks variable $x_{i,j}$, then Delayer answers 0 if hole j is already occupied, otherwise she leaves the decision to Prover.

Observation

- The game never ends by falsifying a clause $\neg x_{i_1,j} \lor \neg x_{i_2,j}$.
- Therefore the game stops at one of the big clauses $\bigvee_{j \in [n]} x_{i,j}$, i.e., for some $i \in [m]$ all variables $x_{i,j}$ with $j \in [n]$ have been assigned to 0 by either Prover or Delayer.
Number of Points for Delayer

- For some $i \in [m]$, all variables $x_{i,j}$ with $j \in [n]$ have been assigned to 0 by either Prover or Delayer.
- We claim that Delayer earns at least n points in the game.
- If $x_{i,j}$ was set to 0 by Prover, then Delayer earns 1 point.
- If $x_{i,j}$ was set to 0 by Delayer, then according to Delayer’s strategy, there was some other pigeon $i' \neq i$ sitting in hole j, i.e., $x_{i',j}$ was assigned to 1. This decision was made by Prover, as Delayer never sets a variable to 1.
- In total Delayer earns a point for each variable $x_{i,j}$ with $j \in [n]$.
- The lower bound follows by the previous theorem.
The Complexity of the Pigeonhole Principle

Theorem

Any tree-like Resolution refutation of PHP_n^m for $m > n$ has size $2^{\Omega(n)}$.

This is not the optimal lower bound.

- Showing lower bounds by the PD-game only works if (the graph of) every tree-like Resolution refutation contains a balanced sub-tree as a minor.
- The height of that sub-tree gives the size lower bound.

Theorem (Iwama & Miyazaki 99)

Any tree-like Resolution refutation of PHP_n^m has size $2^{\Omega(n \log n)}$.
Asymmetric Prover-Delayer Games

For a partial assignment α and a variable x, let $c_0(x, \alpha)$ and $c_1(x, \alpha)$ be functions such that

$$\frac{1}{c_0(x, \alpha)} + \frac{1}{c_1(x, \alpha)} = 1$$

The asymmetric (c_0, c_1)-game

Assume α is the partial assignment built so far in the game and Prover queries x. Then Delayer gets

- 0 points if Delayer chooses the value
- $\log c_0(x, \alpha)$ points if Prover sets x to 0
- $\log c_1(x, \alpha)$ points if Prover sets x to 1.
A Generalization

- The same lower bound holds for the functional pigeonhole principle.
- In addition to the clauses from PHP_n^m we also include

$$
\neg x_{i,j_1} \lor \neg x_{i,j_2}
$$

for all pigeons $i \in [m]$ and distinct holes $j_1, j_2 \in [n]$.
Tree-like vs. DAG-like Resolution
Tree-like Resolution

- A Resolution refutation of F can be depicted as a directed graph were vertices are labeled with the clauses of the refutation and a Resolution step

\[
\begin{array}{c}
C \\
D \\
\hline
E
\end{array}
\]

yields edges (C, E) and (D, E).

- As this graph is acyclic, we also refer to the general Resolution system as **dag-like Resolution**.

- If the graph is a tree we call the refutation tree like. When we allow only tree-like refutations we get the **tree-like Resolution** system.

- In tree-like Resolution, each derived clause can be used at most once as a prerequisite of the Resolution rule.
Tree-like vs. DAG-like Proof Systems

A general question
Are dag-like proof systems more powerful than tree-like systems? Is the dag-like proof system simulated by the corresponding tree-like proof system?

The answer depends on the proof system.

- For Resolution: Dag-like systems are more powerful (exponential separation).
- For Frege systems: dag-like and tree-like versions are equivalent.
Tree-like vs. DAG-like Proof Systems

Theorem (Krajíček 95)

Tree-like Frege systems p-simulate (dag-like) Frege.

Proof.

- Let A_1, \ldots, A_m be a proof in (dag-like) Frege.
- Let

 $$B_i = A_1 \land \cdots \land A_i$$

 for $i = 1, \ldots, m$.
- We get linear-size tree-like Frege proofs of

 $$B_i \rightarrow B_{i+1}$$

 for $i = 1, \ldots, m - 1$.
- $m - 1$ applications of Modus Ponens give A_m.
- The proof is tree-like.
Tree-like vs. DAG-like Proof Systems

The result
There is a family of unsatisfiable CNF that have polynomial-size dag-like Resolution refutations, but require exponential-size tree-like Resolution refutations.

History

- Goerdt 92: first separation: example with poly-size dag-like refutations, but only quasi-polynomial tree-like refutations (modification of PHP).
- Bonet, Galesi, Esteban, Johannsen 98: first exponential separation
- Ben-Sasson, Impagliazzo, Wigderson 04: simplified and improved separation by using games
Separation of Tree-like and DAG-like Resolution

- separating formulas: pebbling formulas
- derived from a pebbling game
- proof method: Prover-Delayer games
- we follow Ben-Sasson, Impagliazzo, Wigderson 04
Pebbling Games

- Pebbling games are played on DAGs
- **Source nodes**: in-degree 0
- **Target nodes**: out-degree 0
- **Game**: place pebbles on nodes according to rules
- **Aim**: place a pebble at some target node

Rules

1. Source nodes can be pebbled freely.
2. All other nodes can be pebbled if all their parents are pebbled.
3. Pebbles can be removed at any time.
Pebbling Number

Complexity measure
Maximal number of pebbles placed simultaneously on the graph.

Pebbling number of a strategy to pebble a graph

- Let S be a strategy to pebble the dag G.
- $P(G, S) = \max \#$ of pebbles placed simultaneously on G while following strategy S

Pebbling number of G

$P(G) = \min \{ P(G, S) \mid S \text{ is a strategy to pebble } G \}$
Graphs with High Pebbling Numbers

Theorem (Celoni, Paul, Tarjan 77)

There exist graphs G with n vertices such that

$$P(G) = \Omega \left(\frac{n}{\log n} \right).$$

- The proof is constructive.
- Example: pyramidal graphs
Pebbling Formulas

DAG $G = (V, E)$

Propositional variables

- x_v for all $v \in V$
- Meaning: $x_v = 1$ if v has been pebbled

Clauses in $Peb^0(G)$

- x_v for any source node v
- $(\bigwedge_{u \in N^-(v)} x_u) \rightarrow x_v$ for all nodes v
- $\neg x_v$ for any target node v

where $N^-(v)$ are the parents of v
Complexity of Peb^0

- $Peb^0(G)$ is unsatisfiable.
- But: They have polynomial-size tree-like Resolution refutations.
- Idea: Start from the bottom and explore the graph in a breadth-first fashion.
Adding Complexity to $\text{Peb}^0(G)$

Idea

- Use pebbles of two different colors: black and white
- Consider a node pebbled if it has a black or white pebble on it

The new principle

- Source nodes can always be pebbled black or white.
- For an internal node v, if all its parents are pebbled black or white, then v can be pebbled either black or white.
- No target node is pebbled black or white.
The New Pebbling Formulas

DAG $G = (V, E)$ with in-degree ≤ 2

Propositional variables

- $x_{v,c}$ for all $v \in V$ and $c \in \{B, W\}$
- Meaning: $x_{v,B} = 1$ if v has been pebbled black
 $x_{v,W} = 1$ if v has been pebbled white

Clauses in $Peb(G)$

$x_{v,B} \lor x_{v,W}$ for any source node v

$x_{u,a} \land x_{w,b} \rightarrow x_{v,B} \lor x_{v,W}$ for all nodes $v \in V$, $a, b \in \{B, W\}$

where u and w are the parents of v

$\neg x_{v,B}, \neg x_{v,W}$ for any target node v
Complexity of $Peb(G)$

- $Peb(G)$ is unsatisfiable.
- Proof strategy as for Peb^0 does not work anymore.
- But: They have polynomial-size dag-like Resolution refutations.
- Our aim: Show a lower bound for tree-like Resolution
The Pebbling Formulas in Tree-like Resolution

Main Theorem
Let G be a DAG with in-degree ≤ 2. Then Delayer has a strategy to win $P(G) - 3$ points in any PD-game played on $Peb(G)$.

Theorem (Celoni, Paul, Tarjan 77)
There exist graphs G with n vertices such that

$$P(G) = \Omega \left(\frac{n}{\log n} \right).$$

Corollary
There exist graphs G with n vertices for which $Peb(G)$ requires tree-like Resolution refutations of size $2^{\Omega \left(\frac{n}{\log n} \right)}$.
Proof of Main Theorem

Let G be the DAG with source nodes S and target nodes T.

Strategy of Delayer

- Keep two sets S' and T'.
- In the beginning, set $S' = S$ and $T' = T$.
- Denote by $P(G, S', T')$ the pebbling number of G with source nodes S' and target nodes T'.
- If Prover asks variable x_v, belonging to node v, then Delayer reacts as follows
 1. If $v \in S'$, then answer 1.
 2. If $v \in T'$, then answer 0.
 3. If $v \notin S' \cup T'$ and $P(G, S', T' \cup \{v\}) = P(G, S', T')$, then answer 0 and set $T' = T' \cup \{v\}$.
 4. If $v \notin S' \cup T'$ and $P(G, S', T' \cup \{v\}) < P(G, S', T')$, then leave decision to Prover and set $S' = S' \cup \{v\}$.
Intuition for the Strategy

If Prover asks variable x_v, belonging to node v, then Delayer reacts as follows

1. If $v \in S'$, then answer 1.
 Source nodes are always pebbled.
2. If $v \in T'$, then answer 0.
 Target nodes are never pebbled.
3. If $v \not\in S' \cup T'$ and $P(G, S', T' \cup \{v\}) = P(G, S', T')$, then answer 0 and set $T' = T' \cup \{v\}$.
 If pebbling number remains the same, v is added to T' and is not pebbled.
4. If $v \not\in S' \cup T'$ and $P(G, S', T' \cup \{v\}) < P(G, S', T')$, then leave decision to Prover and set $S' = S' \cup \{v\}$.
 If pebbling number decreases, v is added to S' and Prover has to pay. But he can only choose the color of v.

How many points does Delayer earn?

Intuition

- Whenever the pebbling number decreases, Delayer gets a point.
- Hence Delayer scores according to the pebbling number of G.

Lemma

When the game terminates, $P(G, S', T') \leq 3$.

Lemma

For any node v and sets $S, T

\[P(G, S, T) \leq \max\{P(G, S, T \cup \{v\}), P(G, S \cup \{v\}, T) + 1\}. \]
How many points does Delayer earn?

Lemma
When the game terminates, \(P(G, S', T') \leq 3 \).

Lemma
For any node \(v \) and sets \(S, T \)

\[
P(G, S, T) \leq \max\{P(G, S, T \cup \{v\}), P(G, S \cup \{v\}, T) + 1\}.
\]

Lemma
After any round, if Delayer has earned \(p \) points, then
\(P(G, S', T') \geq P(G, S, T) - p \).

Corollary
Delayer scores at least \(P(G, S, T) - 3 \) points.
The Result

Theorem

There exists an infinite family of explicitly constructible formulas θ_n s.t.

1. $|\theta_n| = O(n)$;

2. θ_n require tree-like Resolution refutations of size $2^{\Omega(\frac{n}{\log n})}$;

3. θ_n have Resolution refutations of size $O(n)$.
Linear Resolution Refutations of Pebbling Formulas

- Fix a topological sort of \(G \).
- In order of this sort we inductively derive \(x_v, B \lor x_v, W \).
- If \(v \) has no predecessors, then \(v \in S \) and \(x_v, B \lor x_v, W \) is an axiom.
- If \(v \) has 2 predecessors \(u, w \), then we have inductively derived \(x_u, B \lor x_u, W \) and \(x_w, B \lor x_w, W \).
- Together with the four pebbling axioms for \(v \), these formulas imply \(x_v, B \lor x_v, W \).
- By completeness of Resolution, we have a Resolution derivation of \(x_v, B \lor x_v, W \) from these clauses.
- The derivation is of constant size as only it only contains 6 variables.
- Thus we derive \(x_t, B \lor x_t, W \) for some target \(t \in T \) in linear size.
- Using the target axioms, we get a contradiction.
DAG-like Resolution
Boolean Circuits

Definition
A **Boolean circuit** is a directed acyclic graph where

- nodes with in-degree 0 are labeled with variables x_1, x_2, \ldots or constants 0/1;
- nodes with in-degree ≥ 1 are gates labeled with \neg, \land, or \lor;
- nodes with out-degree 0 are called output gates.
Non-uniform Complexity Classes

Functions computed by Boolean circuits

- Let C_n be a Boolean circuit in n input variables x_1, \ldots, x_n and one output gate.
- Then C_n computes a Boolean function $\{0, 1\}^n \mapsto \{0, 1\}$.
- The family $(C_n)_{n \geq 1}$ computes a function $\{0, 1\}^* \mapsto \{0, 1\}$.
- Non-uniformity: for each input length we use a different algorithm.

Definition
The class P/poly contains all languages L for which the characteristic function is computable by a family of Boolean circuits.
Lower Bounds

Lower bounds are hard
We do not know any specific function which cannot be computed by linear size Boolean circuits.

A restricted model

- A monotone Boolean circuit is a circuit without ¬ gates.
- In this model we know exponential lower bounds [Alon & Boppana 87].
Clique-Colour Formulas

Clique-Colour Formulas

- Idea: a graph with a $k + 1$-clique is not k-colourable.
- Let $Clique_{n}^{k+1}(\bar{p}, \bar{r})$ be a propositional formula expressing that the graph of size n encoded in the variables \bar{p} contains a clique of size $k + 1$.
- Similarly, $Colour_{n}^{k}(\bar{p}, \bar{s})$ expresses that the graph specified by \bar{p} is k-colourable.
- $Clique_{n}^{k+1}(\bar{p}, \bar{r}) \rightarrow \neg Colour_{n}^{k}(\bar{p}, \bar{s})$ are propositional tautologies.
A Lower Bound for Monotone Circuits

Definition
A Boolean circuit $C(\bar{p})$ interpolates the Clique-Colour formulas if
- the graph \bar{p} contains a $k + 1$-clique $\Rightarrow C(\bar{p}) = 1$;
- the graph \bar{p} is k-colourable $\Rightarrow C(\bar{p}) = 0$.

Theorem (Alon, Boppana 87)
For $k = \sqrt{n}$, the Clique-Colour formulas require monotone interpolating circuits of size $2^{\Omega(n^{\frac{1}{4}})}$.
Craig’s Interpolation Theorem

Theorem (Craig’s Interpolation Theorem)

Let $\varphi(\bar{x}, \bar{y})$ and $\psi(\bar{x}, \bar{z})$ be propositional formulas with all variables displayed. Let \bar{y} and \bar{z} be distinct tuples of variables such that \bar{x} are the common variables of φ and ψ. If

$$\varphi(\bar{x}, \bar{y}) \rightarrow \psi(\bar{x}, \bar{z})$$

is a tautology, then there exists a propositional formula $\theta(\bar{x})$ using only the common variables of φ and ψ such that

$$\varphi(\bar{x}, \bar{y}) \rightarrow \theta(\bar{x}) \quad \text{and} \quad \theta(\bar{x}) \rightarrow \psi(\bar{x}, \bar{z})$$

are tautologies.
A Key Technique – Feasible Interpolation

Definition (Krajíček 97)

A proof system P has **feasible interpolation** if there exists a polynomial time procedure that takes as input an implication \(\varphi(\bar{x}, \bar{y}) \rightarrow \psi(\bar{x}, \bar{z}) \) and a P-proof π of \(\varphi(\bar{x}, \bar{y}) \rightarrow \psi(\bar{x}, \bar{z}) \) and outputs a Boolean circuit $C(\bar{x})$ such that C computes an interpolant of φ and ψ.
Conditional Lower Bounds

Theorem
Let P be a proof system with feasible interpolation. If $\text{NP} \cap \text{coNP} \not\subseteq P/\text{poly}$, then P is not polynomially bounded.

Proof idea

- Suppose we know that a sequence of formulas $\varphi_0^n \lor \varphi_1^n$ cannot be interpolated by polynomial-size circuits as above.
- Then $\varphi_0^n \lor \varphi_1^n$ do not have polynomial-size proofs in any proof system which has feasible interpolation.
- Such formulas $\varphi_0^n \lor \varphi_1^n$ are easy to construct under suitable assumptions.
- For instance, the formulas could express that factoring integers is not possible in polynomial time (which implies $\text{NP} \cap \text{coNP} \not\subseteq P/\text{poly}$).
Unconditional Lower Bounds

Theorem (Krajíček 97)

Resolution has the monotone feasible interpolation property, i.e. there exist monotone interpolating circuits.

Theorem (Alon, Boppana 87)

For $k = \sqrt{n}$, the Clique-Colour formulas require monotone interpolating circuits of size $2^{\Omega(n^{1/4})}$.

Theorem

For $k = \sqrt{n}$, the clause sets expressing the negation of the Clique-Colour formulas require Resolution refutations of size $2^{\Omega(n^{1/4})}$.
Theorem (Pudlák 97)
Cutting Planes has the monotone feasible interpolation property.

Corollary
For \(k = \sqrt{n} \), the clause sets expressing the negation of the Clique-Colour formulas require Cutting Planes refutations of size \(2^{\Omega(n^{\frac{1}{4}})} \).
Feasible Interpolation for Stronger Systems?

Theorem (Krajíček & Pudlák 98)
Extended Frege systems do not have feasible interpolation unless RSA is insecure.

Theorem (Bonet, Pitassi, Raz 00)
Frege systems do not have feasible interpolation unless Blum integers can be factored in polynomial time (a Blum integer is the product of two primes which are both congruent 3 modulo 4).

Theorem (Bonet, Domingo, Gavaldà, Maciel, Pitassi 04)
Bounded-depth Frege systems do not have feasible interpolation under cryptographic assumptions.
Proof complexity of modal and intuitionistic logics
Proof Complexity of Non-classical Logics

In the last decade
Intense research on complexity of proofs in non-classical logics

Why non-classical logics?

▶ Non-classical logics such as modal logics, tree logics, or non-monotonic logics have numerous applications, e.g. verification, model checking, expert systems, or modeling common sense reasoning.

▶ Yields better understanding of propositional proofs – we see new phenomena which do not appear in classical logic.

▶ Separation of complexity classes.
Separation of Complexity Classes

▶ Non-classical logics are often more expressive than propositional logic.
▶ They are associated with large complexity classes.
▶ Satisfiability of the modal logic K is PSPACE-complete [Ladner 77].
▶ As in the Cook-Reckhow programme, proving lower bounds to the lengths of proofs in non-classical logics aims to separate NP from PSPACE.
▶ Intuitively, lower bounds to the lengths of proofs in non-classical logic should be easier to obtain ($NP \neq coNP \implies NP \neq PSPACE$)
▶ In contrast to classical logic, we have exponential lower bounds for modal and intuitionistic Frege systems [Hrubeš 07, Jeřábek 09]
A Classical Frege System

Axioms

\[p_1 \rightarrow (p_2 \rightarrow p_1) \]
\[(p_1 \rightarrow p_2) \rightarrow (p_1 \rightarrow (p_2 \rightarrow p_3)) \rightarrow (p_1 \rightarrow p_3) \]
\[p_1 \rightarrow p_1 \lor p_2 \]
\[p_2 \rightarrow p_1 \lor p_2 \]
\[(p_1 \rightarrow p_3) \rightarrow (p_2 \rightarrow p_3) \rightarrow (p_1 \lor p_2 \rightarrow p_3) \]
\[(p_1 \rightarrow p_2) \rightarrow (p_1 \rightarrow \neg p_2) \rightarrow \neg p_1 \]
\[\neg \neg p_1 \rightarrow p_1 \]
\[p_1 \land p_2 \rightarrow p_1 \]
\[p_1 \land p_2 \rightarrow p_2 \]
\[p_1 \rightarrow p_2 \rightarrow p_1 \land p_2 \]

Modus Ponens

\[
\begin{array}{c}
p_1 \\
p_1 \rightarrow p_2
\end{array}
\]
\[p_2 \]
Modal language
In addition to the propositional connectives the modal language contains the unary connective □.

New axioms and rules

- Axiom of distributivity \(□(p \rightarrow q) \rightarrow (□p \rightarrow □q) \)
- Rule of necessitation \(\frac{p}{□p} \)

Modal logics
The modal logic \(K \) is defined as the set of all modal formulas derivable in this Frege system.
Other modal logics can be obtained by adding further axioms:

<table>
<thead>
<tr>
<th>modal logic</th>
<th>axioms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K4$</td>
<td>$K + \Box p \rightarrow \Box \Box p$</td>
</tr>
<tr>
<td>KB</td>
<td>$K + p \rightarrow \Box \neg \Box \neg p$</td>
</tr>
<tr>
<td>GL</td>
<td>$K + \Box (\Box p \rightarrow p) \rightarrow \Box p$</td>
</tr>
<tr>
<td>$S4$</td>
<td>$K4 + \Box p \rightarrow p$</td>
</tr>
<tr>
<td>$S4Grz$</td>
<td>$S4 + \Box (\Box (p \rightarrow \Box p) \rightarrow p) \rightarrow \Box p$</td>
</tr>
</tbody>
</table>
Frege Systems for Intuitionistic Logic

While modal logics extend the classical propositional calculus, intuitionistic logics are restrictions thereof.

Axioms

\[
\begin{align*}
 p_1 & \rightarrow (p_2 \rightarrow p_1) \\
 (p_1 \rightarrow p_2) & \rightarrow (p_1 \rightarrow (p_2 \rightarrow p_3)) \rightarrow (p_1 \rightarrow p_3) \\
 p_1 & \rightarrow p_1 \lor p_2 \\
 p_2 & \rightarrow p_1 \lor p_2 \\
 (p_1 \rightarrow p_3) & \rightarrow (p_2 \rightarrow p_3) \rightarrow (p_1 \lor p_2 \rightarrow p_3) \\
 \bot & \rightarrow p_1 \\
 p_1 \land p_2 & \rightarrow p_1 \\
 p_1 \land p_2 & \rightarrow p_2 \\
 p_1 & \rightarrow p_2 \rightarrow p_1 \land p_2
\end{align*}
\]

Modus Ponens

\[
\begin{array}{c}
 p_1 \\
 p_1 \rightarrow p_2 \\
\end{array}
\rightarrow

\begin{array}{c}
 p_2
\end{array}
\]
Lower Bounds for Clique-Colour Tautologies

- In order to prove lower bounds for the Clique-Colour tautologies we need a monotone feasible interpolation theorem where the interpolating circuits are monotone.

- Such a result is known for Resolution and Cutting Planes, but does not hold for Frege systems under reasonable assumptions (factoring integers is not possible in polynomial time) [Krajíček, Pudlák 98, Beame, Pitassi, Raz 00]

- Therefore we cannot expect a full version of monotone feasible interpolation for modal extensions of classical Frege.
The Idea of the Lower Bound for K-Frege

Hrubeš modified the Clique-Colouring formulas in a clever way by introducing \Box in appropriate places:

$$Clique_{n}^{k+1}(\Box \bar{p}, \bar{r}) \rightarrow \Box(\neg Colour_{n}^{k}(\bar{p}, \bar{s})) \quad (2)$$

with $k = \sqrt{n}$. Hrubeš showed

- the formulas (2) are modal tautologies;
- if the formulas (2) are provable in K with $m(n)$ distributivity axioms, then the original Clique-Colour formulas can be interpolated by monotone circuits of size $O(m(n)^2)$.

Theorem (Hrubeš 09)

The formulas (2) are K-tautologies. Every K-Frege proof of the formulas (2) uses $2^{n^{\Omega(1)}}$ steps.
A Version of Monotone Interpolation for K

Theorem

Let π be a proof of the formula

$$\varphi \rightarrow \Box \psi$$

in the Frege system for K which uses n modal rules. Let $\Box A_1, \ldots, \Box A_k$ be the immediate modal subformulas of φ. Then there exists a monotone circuit C of size $O(n^2)$ in k variables such that

- $\varphi(\Box A_1, \ldots, \Box A_k, \vec{s}) \rightarrow C(\Box A_1, \ldots, \Box A_k)$ and
- $C(\Box A_1, \ldots, \Box A_k) \rightarrow \Box \psi$

are K-tautologies.
The Lower Bound for K

Theorem (Hrubeš 09)

Every K-Frege proof of the formulas

\[\text{Clique}_{n^{\sqrt{n}+1}}(\square \bar{p}, \bar{r}) \rightarrow \square (\neg \text{Colour}_{n^{\sqrt{n}}} (\bar{p}, \bar{s})) \]

uses $2^{n^{\Omega(1)}}$ steps.
Along the same lines, Hrubeš proved lower bounds for intuitionistic Frege systems. For this he modified the Clique-Colour formulas to the intuitionistic version

\[\bigwedge_{i=1}^{n} (p_i \lor q_i) \rightarrow \left(\neg \text{Colour}_n^k (\bar{p}, \bar{s}) \lor \neg \text{Clique}_n^{k+1} (\bar{q}, \bar{r}) \right) \tag{3} \]

where again \(k = \sqrt{n} \).

Theorem (Hrubeš 09)

The formulas (3) are intuitionistic tautologies and require intuitionistic Frege proofs with \(2^n \Omega(1) \) steps.

The lower bounds were extended by Jeřábek (2009) to all modal and superintuitionistic logics with infinite branching.
QBF proof complexity
Quantified Boolean Formulas (QBF)

- QBFs are propositional formulas with boolean quantifiers ranging over 0,1.
- Deciding QBF is PSPACE complete.

\[
\begin{array}{c}
\exists Z \forall Y \exists X. \phi \\
\Sigma^P_3 \\
\Pi^P_3 \\
\forall Z \exists Y \forall X. \phi \\
\exists Y \forall X. \phi \\
\Sigma^P_2 \\
\Pi^P_2 \\
\forall Y \exists X. \phi \\
\exists X. \phi \\
\Sigma^P_1 = \text{NP} \\
\Pi^P_1 = \text{co-NP} \\
\forall X. \phi
\end{array}
\]
Semantics via a two-player game

- We consider QBFs in prenex form with CNF matrix.
 Example: $\forall y_1 y_2 \exists x_1 x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$
- A QBF represents a two-player game between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a winning strategy for \exists.
- A QBF is false iff there exists a winning strategy for \forall.
 Example:
 $$\forall u \exists e. (u \lor e) \land (\neg u \lor \neg e)$$

\exists wins by playing $e \leftarrow \neg u$.

Relation to SAT/QBF solving

- **SAT** — given a Boolean formula, determine if it is *satisfiable*.
- **QBF** — given a Quantified Boolean formula (without free variables), determine if it is true.
- Despite SAT being NP hard, SAT solvers are very successful.
- QBF solving applies to further fields (verification, planning), but is at a much earlier stage.
- Proof complexity is the main theoretical framework to understanding performance and limitations of SAT/QBF solving.
- Runs of the solver on unsatisfiable formulas yield proofs of unsatisfiability in resolution-type proof systems.
QBF proof systems

- There are two main paradigms in QBF solving: Expansion based solving and CDCL solving.
- Various QBF proof systems model these different solvers.

- Various sequent calculi exist as well. [Krajíček & Pudlák 90], [Cook & Morioka 05], [Egly 12]
QBF proof systems at a glance

Q-Resolution (Q-Res)

- QBF analogue of Resolution (?)
- introduced by [Kleine Büning, Karpinski, Flögel 95]
- Tree-Q-Res: tree-like version
Q-resolution

Q-resolution = resolution rule + ∀-reduction

Resolution

\[
\frac{l \lor C_1 \quad \neg l \lor C_2}{C_1 \lor C_2} \quad (l \text{ existentially quantified})
\]

Tautologous resolvents are generally unsound and not allowed.

∀-reduction

\[
\frac{C \lor k}{C} \quad (k \in C \text{ is universal with innermost quant. level in } C)
\]
Q-resolution Example

∀u∃e. (u ∨ ¬e) ∧ (u ∨ e)
Further systems at a glance

Long-distance resolution (LD-Q-Res)

- allows certain resolution steps forbidden in Q-Res
- merges universal literals u and $\neg u$ in a clause to u^*
- introduced by [Zhang & Malik 02] [Balabanov & Jiang 12]
QBF proof systems at a glance

Universal resolution (QU-Res)

- allows resolution over universal pivots
- introduced by [Van Gelder 12]
QBF proof systems at a glance

- **IRM-calc**
- **IR-calc**
- **∀Exp+Res**

LQU⁺-Res
- combines long-distance and universal resolution
- introduced by [Balabanov, Widl, Jiang 14]

LD-Q-Res
- expansion solving

QU-Res
- CDCL solving

Q-Res
- Tree-Q-Res
Expansion based calculi

∀Exp+Res

▶ expands universal variables (for one or both values 0/1)
▶ introduced by [Janota & Marques-Silva 13]
Annotated literals couple together existential and universal literals: l^α, where
- l is an existential literal.
- α is a partial assignment to universal literals.

Rules of $\forall\text{Exp+Res}$

\[
\begin{align*}
\text{C in matrix} & \quad \{ l^{[\tau]} \mid l \in C, l \text{ is existential} \} \\
\text{(Axiom)} & \quad \tau \text{ is a complete assignment to universal variables} \\
& \quad \text{s.t. there is no universal literal } u \in C \text{ with } \tau(u) = 1. \\
\text{[} \tau \text{] takes only the part of } \tau \text{ that is } < l. \\
\frac{x^\tau \lor C_1}{C_1 \cup C_2} & \quad \neg x^\tau \lor C_2 \quad \text{(Resolution)}
\end{align*}
\]
Example proof in $\forall\text{Exp} + \text{Res}$

$\exists e_1 \forall u \exists e_2$

Diagram:

- $e_1 \lor u \lor e_2$
- $\neg e_1 \lor \neg u \lor e_2$
- $\neg e_2$
- $e_1 \lor e_2$
- $\neg e_1 \lor e_2$
- $\neg e_2$
- $e_2 \lor e_2$
- $\neg e_2$
- $\neg e_2$
- \bot

Proof steps:
1. $e_1 \lor u \lor e_2$
2. $\neg e_1 \lor \neg u \lor e_2$
3. $\neg e_2$
4. $e_1 \lor e_2$
5. $\neg e_1 \lor e_2$
6. $\neg e_2$
7. $e_2 \lor e_2$
8. $\neg e_2$
9. $\neg e_2$
10. \bot
Further expansion-based systems at a glance

IR-calc

- Instantiation + Resolution
- ‘delayed’ expansion
- introduced by [B., Chew, Janota 14]
Further expansion-based systems at a glance

IRM-calc
- Instantiation + Resolution + Merging
- allows merged universal literals u^*
- introduced by [B., Chew, Janota 14]
Some recent results

Towards a proof-theoretic understanding of QBF resolution systems:

- Develop a new lower bound technique that transfers circuit lower bounds to proof size lower bounds
- Apply to prove new exponential lower bounds for a number of QBF resolution systems
- Prove new separations between QBF proof systems
- Reveals full picture of the QBF simulation structure
Understanding the simulation structure of QBF systems

- In this talk we will concentrate on the separation of \(\forall \text{Exp}+\text{Res} \) and Q-Res.
- Serves as primer for the general lower bound technique.
Q-Res vs \forallExp$+$Res

- \forallExp$+$Res does not simulate Q-Res.
 [Janota & Marques-Silva 13]

- For the converse we need formulas hard for the CDCL proof systems but easy for expansion proof systems.

- Need new hard formulas for Q-Res.
We move back to thinking about the two player game. Remember every false QBF has a winning strategy (for the universal player).

Idea: Hard strategies may require large proofs . . .

. . . or the contrapositive: short proofs may lead to easy strategies.

Then we just need to find false formulas with ‘hard strategies’ for the universal player.
Theorem (Balabanov & Jiang 12)

From a Q-Res refutation π of ϕ, we can extract in poly-time a winning strategy for the universal player for ϕ. For each universal variable u of ϕ the winning strategy can be represented as a decision list.

- Short Q-Res proofs give short strategies in decision list format.
- Decision lists can be expressed as bounded depth circuits.
A hard strategy

\[\text{Parity}(x_1, \ldots, x_n) = x_1 \oplus \cdots \oplus x_n \]

Theorem (Furst, Saxe & Sipser 84, Håstad 87)

\text{Parity} \notin \text{AC}^0. \text{ In fact, every non-uniform family of bounded-depth circuits computing Parity is of exponential size.}

- Now we only need to force the universal strategy to compute \text{Parity}!
Let ϕ_n be a propositional formula computing $x_1 \oplus \cdots \oplus x_n$.

Consider the QBF $\exists x_1, \ldots, x_n \forall z. (z \lor \phi_n) \land (\neg z \lor \neg \phi_n)$.

The matrix of this QBF states that z is equivalent to the opposite value of $x_1 \oplus \cdots \oplus x_n$.

The unique strategy for the universal player is therefore to play z equal to $x_1 \oplus \cdots \oplus x_n$.

Defining ϕ_n

Let $\text{xor}(o_1, o_2, o)$ be the set of clauses
\[
\{\neg o_1 \lor \neg o_2 \lor \neg o, o_1 \lor o_2 \lor \neg o, \neg o_1 \lor o_2 \lor o, o_1 \lor \neg o_2 \lor o\}.
\]

Define
\[
\text{QParity}_n = \exists x_1, \ldots, x_n \forall z \exists t_2, \ldots, t_n. \text{xor}(x_1, x_2, t_2) \cup \bigcup_{i=3}^{n} \text{xor}(t_{i-1}, x_i, t_i) \cup \{z \lor t_n, \neg z \lor \neg t_n\}
\]
The exponential lower bound

\[
\text{QParity}_n = \exists x_1, \ldots, x_n \forall z \exists t_2, \ldots, t_n. \text{xor}(x_1, x_2, t_2) \cup \\
\bigcup_{i=3}^{n} \text{xor}(t_{i-1}, x_i, t_i) \cup \{z \lor t_n, \neg z \lor \neg t_n\}
\]

Theorem (B., Chew & Janota 15)

\text{QParity}_n \text{ require exponential-size } \text{Q-Res refutations.}

Proof idea

- By [Balabanov & Jiang 12] we extract strategies from any Q-Res proof as a decision list in polynomial time.
- But \text{Parity}(x_1, \ldots x_n) requires exponential-size decision lists [Furst, Saxe, Sipser 84][Håstad 87].
- Therefore Q-Res proofs must be of exponential size. \qed
Proposition (B., Chew & Janota 15)

QParity has polynomial size proofs in ∀Exp+Res.

Proof idea

- We prove \(t_i^{0/z} = t_i^{1/z} \) by induction on \(i \) and derive a contradiction on the clauses \(z \lor t_n, \neg z \lor \neg t_n \).
From propositional proof systems to QBF

A general \forallred rule

- Fix a prenex QBF Φ.
- Let $F(\bar{x}, u)$ be a propositional line in a refutation of Φ, where u is universal with innermost quant. level in F.

\[
\begin{align*}
F(\bar{x}, u) & \quad \frac{F(\bar{x}, u)}{F(\bar{x}, 0)} \\
F(\bar{x}, u) & \quad \frac{F(\bar{x}, u)}{F(\bar{x}, 1)}
\end{align*}
\]

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define the QBF proof system $P + \forall$red by adding \forallred to the rules of P.

Proposition (B., Bonacina & Chew 16)

$P + \forall$red is sound and complete for QBF.
Important propositional proof systems

Frege systems

- Hilbert-type systems
- use axiom schemes and rules, e.g. modus ponens $\frac{A}{B}$
A natural hierarchy of QBF systems

Examples

- Res + ∀red (≡ QU-Res)
- Frege + ∀red
- Cutting Planes + ∀red

A hierarchy of Frege systems

\(C \)-Frege + ∀red where \(C \) is a circuit class restricting the formulas allowed in the Frege system, e.g.

- \(AC^0 \)-Frege = bounded-depth Frege
- \(AC^0[p] \)-Frege = bounded-depth Frege with mod \(p \) gates for a prime \(p \)
Strategy extraction for ∀-Red+P

A \mathcal{C}-decision list computes a function $u = f(\bar{x})$

\[
\text{If } C_1(\bar{x}) \text{ Then } u \leftarrow c_1 \\
\text{Else If } C_2(\bar{x}) \text{ Then } u \leftarrow c_2 \\
\quad \vdots \\
\text{Else If } C_l(\bar{x}) \text{ Then } u \leftarrow c_l \\
\text{Else } u \leftarrow c_{l+1}
\]

where $C_i \in \mathcal{C}$ and $c_i \in \{0, 1\}$

Theorem (B., Bonacina, Chew 16)

\mathcal{C}-Frege+\forall red has strategy extraction in \mathcal{C}-decision lists, i.e. from a refutation π of $F(\bar{x}, \bar{u})$ you can extract in poly-time a collection of \mathcal{C}-decision lists computing a winning strategy on the universal variables of F.
From decision lists to circuits

\[
\begin{align*}
&\text{IF } C_1(\bar{x}) \text{ THEN } u \leftarrow c_1 \\
&\text{ELSE IF } C_2(\bar{x}) \text{ THEN } u \leftarrow c_2 \\
&\quad \vdots \\
&\text{ELSE IF } C_l(\bar{x}) \text{ THEN } u \leftarrow c_l \\
&\text{ELSE } u \leftarrow c_{l+1}
\end{align*}
\]

where \(C_i \in \mathcal{C} \) and \(c_i \in \{0, 1\} \)

Proposition

Each \(\mathcal{C} \)-decision list as above can be transformed into a \(\mathcal{C} \)-circuit of depth \(\max(\text{depth}(C_i)) + 2 \).

Corollary (B., Bonacina, Chew 16)

- depth-\(d \)-Frege+\(\forall \)red has strategy extraction with circuits of depth \(d + 2 \).
- \(AC^0 \)-Frege+\(\forall \)red has strategy extraction in \(AC^0 \).
- \(AC^0[p] \)-Frege+\(\forall \)red has strategy extraction in \(AC^0[p] \).
From functions to QBF

- Let \(f(\overline{x}) \) be a boolean function.
- Define the QBF

\[
Q-f = \exists \overline{x} \forall z \exists \overline{t}. z \neq f(\overline{x})
\]

- \(\overline{t} \) are auxiliary variables describing the computation of a circuit for \(f \).
- \(z \neq f(\overline{x}) \) is encoded as a CNF.
- The only winning strategy for the universal player is to play \(z \leftarrow f(\overline{x}) \).
Theorem (B., Bonacina, Chew 16)

Let f be any function hard for depth 3 circuits. Then $Q\cdot f$ is hard for $\text{Res} + \forall\text{red}$.

Proof.

- Let Π be a refutation of $Q\cdot f$ in $\text{Res} + \forall\text{red}$.
- By strategy extraction, we obtain from Π a decision list computing f.
- Transform the decision list into a depth 3 circuit C for f.
- As f is hard to compute in depth 3, Π must be long.
Theorem (Razborov 87, Smolensky 87)

For each odd prime p, Parity requires exponential-size $AC^0[p]$ circuits.

Theorem (B., Bonacina, Chew 15)

Q-Parity requires exponential-size $AC^0[p]$-Frege$+\forall$red proofs.

In contrast

No lower bound is known for $AC^0[p]$-Frege.

Theorem (B., Bonacina, Chew 15)

Q-Parity has poly-size Frege$+\forall$red proofs.
Strong lower bound example II

Theorem (Håstad 89)

The functions $Sipser_d$ exponentially separate depth $d - 1$ from depth d circuits.

Theorem (B., Bonacina, Chew 15)

Q-$Sipser_d$

- requires exponential-size proofs in depth $(d - 3)$-$\text{Frege} + \forall \text{red}$.
- has polynomial-size proofs in depth d-$\text{Frege} + \forall \text{red}$.

Note

- Q-$Sipser_d$ is a quantified CNF.
- Separating depth d Frege systems with constant depth formulas (independent of d) is a major open problem in the propositional case.
The current frontier: propositional vs QBF

- EF
- Frege
- TC^0-Frege
- $\text{AC}^0[p]$-Frege
- AC^0-Frege
- Resolution

- not polynomially bounded in QBF
- not polynomially bounded in propositional
Lower bounds for Frege?

Theorem [B., Bonacina & Chew (ITCS’16)]
If $\text{PSPACE} \not\subseteq \text{NC}^1$, then $\text{Frege}+\forall\text{red}$ has superpolynomial lower bounds.

Open problem
unconditional lower bounds for $\text{Frege}+\forall\text{red}$

Theorem [B. & Pich (LICS’16)]
$\text{Frege}+\forall\text{red}$ has superpolynomial lower bounds if and only if
- $\text{PSPACE} \not\subseteq \text{NC}^1$ or
- Frege has superpolynomial lower bounds.
Feasible Interpolation

- classical technique relating circuit complexity to proof complexity.
- transforms lower bounds for monotone circuits into lower bounds for proof size in e.g. resolution [Krajíček 97] or Cutting Planes [Pudlák 97].

Theorem (B., Chew, Mahajan, Shukla 15)
All QBF resolution calculi have monotone feasible interpolation.

Relation to strategy extraction

- Each feasible interpolation problem can be transformed into a strategy extraction problem, where the interpolant corresponds to the winning strategy of the universal player on the first universal variable.
- Feasible interpolation can be viewed as a special case of strategy extraction.
Frege and Stronger Systems
Frege Systems

- Frege systems derive formulas using axioms and rules.
- Usually called Hilbert-style systems in texts on classical logic.

Definition

A Frege rule is a \((k + 1)\)-tuple \((\varphi_0, \varphi_1, \ldots, \varphi_k)\) of propositional formulas such that

\[
\{\varphi_1, \varphi_2, \ldots, \varphi_k\} \models \varphi_0.
\]

The standard notation for rules is

\[
\begin{array}{c}
\varphi_1 & \varphi_2 & \cdots & \varphi_k \\
\hline
\varphi_0
\end{array}
\]

A Frege rule with \(k = 0\) is called a Frege axiom.
A formula ψ_0 can be derived from formulas ψ_1, \ldots, ψ_k by a Frege rule $(\varphi_0, \varphi_1 \ldots, \varphi_k)$ if there exists a substitution σ such that

$$\sigma(\varphi_i) = \psi_i \quad \text{for } i = 0, \ldots, k.$$

Let \mathcal{F} be a finite set of Frege rules.

An \mathcal{F}-proof of a formula φ from a set of propositional formulas Φ is a sequence $\varphi_1, \ldots, \varphi_l = \varphi$ of propositional formulas such that for all $i = 1, \ldots, l$ one of the following holds:

1. $\varphi_i \in \Phi$ or
2. there exist numbers $1 \leq i_1 \leq \cdots \leq i_k < i$ such that φ_i can be derived from $\varphi_{i_1}, \ldots, \varphi_{i_k}$ by a Frege rule from \mathcal{F}.

Notation: $\mathcal{F} : \Phi \vdash \varphi$
Frege Systems

- F is called **complete** if for all formulas φ

 $$\models \varphi \iff F : \emptyset \vdash \varphi .$$

- F is called **implicationally complete** if for all formulas φ and sets of formulas Φ

 $$\Phi \models \varphi \iff F : \Phi \vdash \varphi .$$

- F is a **Frege system** if F is implicationally complete.
Example of a Frege System

Axioms

\[p_1 \rightarrow (p_2 \rightarrow p_1) \]
\[(p_1 \rightarrow p_2) \rightarrow (p_1 \rightarrow (p_2 \rightarrow p_3)) \rightarrow (p_1 \rightarrow p_3) \]
\[p_1 \rightarrow p_1 \lor p_2 \]
\[p_2 \rightarrow p_1 \lor p_2 \]
\[(p_1 \rightarrow p_3) \rightarrow (p_2 \rightarrow p_3) \rightarrow (p_1 \lor p_2 \rightarrow p_3) \]
\[(p_1 \rightarrow p_2) \rightarrow (p_1 \rightarrow \neg p_2) \rightarrow \neg p_1 \]
\[\neg\neg p_1 \rightarrow p_1 \]
\[p_1 \land p_2 \rightarrow p_1 \]
\[p_1 \land p_2 \rightarrow p_2 \]
\[p_1 \rightarrow p_2 \rightarrow p_1 \land p_2 \]

Modus Ponens

\[\begin{array}{c}
 p_1 \\
 p_1 \rightarrow p_2 \\
\end{array}
\]

\[p_2 \]
Simulations Between Proof Systems

Definition (Cook, Reckhow 79)

- A proof system Q p-simulates a proof system P ($P \leq_p Q$) if there exists a poly-time function f such that $P(\pi) = Q(f(\pi))$ for all π.
- P and Q are p-equivalent ($P \equiv_p Q$) if $P \leq_p Q$ and $Q \leq_p P$.
Equivalence of Classical Frege Systems

Theorem (Cook, Reckhow 79)

All Frege systems are polynomially equivalent.

Sketch of Proof

1. If F_1 and F_2 are Frege systems over distinct propositional languages L_1 and L_2, respectively, then we have to translate L_1-formulas into L_2-formulas. To obtain polynomial size formulas after the translation, we rebalance the formulas to logarithmic logical depth. This is possible by Spira’s theorem.

2. Let F_1 and F_2 be two Frege systems using the same propositional language. Then the equivalence of F_1 and F_2 can be shown by deriving every F_1-rule in F_2 and vice versa.
A Game for Frege Systems

- developed by Pudlák and Buss 94
- played between Prover and Spoiler

Pudlák-Buss games

- Aim: prove that φ is a tautology.
- Spoiler claims that he knows a falsifying assignment α for φ.
- Prover asks the value of arbitrary formulas under α.
- Spoiler answers 0 or 1.
- Prover wins if he finds an immediate contradiction, e.g. he got answer 0 for $\theta_1 \land \theta_2$ and answer 1 for both θ_1 and θ_2.
Proofs and Games

Theorem

The minimal number of rounds in the game to prove \(\varphi \) is proportional to the logarithm of the minimal number of steps in a Frege proof of \(\varphi \).

Proof

- We only show one direction.
- Let \(\varphi_1, \ldots, \varphi_k \) be a Frege proof of \(\varphi \).
- Prover first asks \(\varphi = \varphi_k \) and gets answers 0.
- Prover then asks \(\bigwedge_{i=1}^{k} \varphi_i \).
- If Spoiler answers 1, this immediately contradicts the previous answer.
- If Spoiler answers 0, Prover uses binary search to find the smallest \(i \) such that Spoiler answers 1 to \(\bigwedge_{i=1}^{i} \varphi_i \) and 0 to \(\bigwedge_{i=1}^{i+1} \varphi_i \).
Proof (cont’d)

- Prover uses binary search to find the smallest i such that Spoiler answers 1 to $\bigwedge_{i=1}^{i} \varphi_i$ and 0 to $\bigwedge_{i=1}^{i+1} \varphi_i$.

- **Case 1**: If no such i exists, Spoiler answered 0 to φ_1 which is an axiom, i.e. a substitution of a constant-size tautology like $A \lor \neg A$.

- Then Prover can find a contradiction in a constant number of queries.
Proof (cont’d)

- Prover uses binary search to find the smallest i such that Spoiler answers 1 to $\bigwedge_{i=1}^{i} \varphi_i$ and 0 to $\bigwedge_{i=1}^{i+1} \varphi_i$.

- Case 2: If this minimal i exists, then φ_{i+1} was derived by a Frege rule (e.g. Modus Ponens) from a constant number of formulas $\varphi_{i_1}, \ldots, \varphi_{i_s}$ with $i_1 < \cdots < i_s < i + 1$.

- Prover asks the formulas $\varphi_{i_1}, \ldots, \varphi_{i_s}$.

- If Spoiler answered 0 to any of these queries, this contradicts the answer to $\bigwedge_{i=1}^{i} \varphi_i$.

- If Spoiler answered 1 to $\varphi_{i_1}, \ldots, \varphi_{i_s}$, then Prover finds a contradiction in a constant number of rounds, because a Frege rule is a substitution of a constant-size tautology. □
Lower Bounds by Games

Theorem

The minimal number of rounds in the game to prove \(\varphi \) is proportional to the logarithm of the minimal number of steps in a Frege proof of \(\varphi \).

Strategy

Show lower bounds for Frege by devising good strategies for Spoiler.

Problem

Has not been done successfully for Frege systems.
The logical depth of a formula is defined as the maximal number of alternations of logical operators in the formula.

Example

- Clauses have depth 1.
- Formulas in DNF or CNF have depth 2.

Bounded-depth Frege

Allow only formulas of logical depth d in the proof for a given constant d.
One of the strongest current lower bounds

Theorem

For any Frege system F and any integer d, there exists a constant $\delta > 0$ such that for large enough n, the size of a depth d F-proof of PHP_{n+1}^n is at least 2^{n^δ}.

History

- Ajtai (1988): First super-polynomial lower bound for PHP in bounded-depth Frege systems
- Uses the connection to bounded arithmetic
- Improved to exponential lower bounds by Pitassi, Beame & Impagliazzo 92 and independently by Krajíček, Pudlák & Woods 92
- Simplified proof by Ben-Sasson & Harsha 2010 using Pudlák-Buss games
Theorem (Buss 87)

The pigeonhole principle has polynomial-size proofs in Frege systems.

The search for hard formulas

- A number of combinatorial principles have been suggested, but most have poly-size Frege proofs.
- A good candidate from logic: reflection principles
- Problem: hard to analyze
- A promising approach: formulas from pseudo-random generators (Krajíček, Razborov)
Beyond Frege
Bounds on Proof Systems

Size of proofs
Let f be a proof system.

- $s_f(x) = \min\{|w| \mid f(w) = x\}$
- $s_f(n) = \max\{s_f(x) \mid |x| \leq n\}$
- f is t-bounded if $s_f(n) \leq t(n)$ for all $n \in \mathbb{N}$.
- If t is a polynomial, then f is called polynomially bounded.

Number of steps

- This measure only makes sense for proof systems where proofs consist of lines containing formulae or sequents.
- $t_f(\varphi) = \min\{k \mid f(\pi) = \varphi$ and π uses k steps$\}$
- $t_f(n) = \max\{t_f(\varphi) \mid |\varphi| \leq n\}$
- Obviously, it holds that $t_f(n) \leq s_f(n)$.
Extensions of Frege Systems

Extended Frege EF

Abbreviations for complex formulas: $q \leftrightarrow \psi$, where q is a new propositional variable.

More precisely

An extended Frege proof of φ is a sequence $(\varphi_1, \ldots, \varphi_l = \varphi)$ of propositional formulas such that for each $i = 1, \ldots, l$ one of the following holds:

1. φ_i has been derived by a Frege rule or axiom;

2. $\varphi_i = q \leftrightarrow \psi$ where ψ is an arbitrary propositional formula and q is a new propositional variable that does not occur in φ, ψ and φ_j for $1 \leq j < i$.
Extensions of Frege Systems

Frege systems with substitution SF

Substitution rule: $\frac{\varphi}{\sigma(\varphi)}$
for arbitrary substitutions σ

The picture

- All Frege systems are p-equivalent.
- Frege $\leq_p EF \equiv_p SF$.
The Picture for Extensions of Frege

Current barrier

- lower bounds to size in Frege systems.

The following measures are equivalent

- number of steps in Frege;
- size in EF;
- number of steps in EF;
- size of SF.

We can exponentially separate

- number of steps in EF;
- number of steps in SF.
The following measures are equivalent

- number of steps in Frege;
- size in EF.

Corollary

*Proving lower bounds on the number of steps in Frege systems means proving lower bounds on the size of EF.***
The language of arithmetic uses the symbols

\[0, S, +, *, \leq \ldots \]

- \[\Sigma^b_1 \]-formulas are formulas in prenex normal form with only bounded \(\exists \)-quantifiers, i.e. \((\exists x \leq t(y)) \psi(x, y)\).
- \[\Sigma^b_1 \]-formulas describe NP-sets.
- \[\Pi^b_1 \]-formulas: \((\forall x \leq t(y)) \psi(x, y) \Rightarrow \text{coNP-sets}\)
Definition (Cook 75, Krajíček & Pudlák 90)

Let $\phi \in \Pi^b_1$. Then there are propositional formulas $\|\phi\|^n$, $n \in \mathbb{N}$ such that:

- $\|\phi\|^n$ can be constructed in polynomial time from 1^n.
- $\|\phi\|^n$ is a tautology $\iff \mathbb{N} \models \phi(a)$ for all $a \in \mathbb{N}$ of length $\leq n$
The Reflection Principle

Definition
The reflection principle of a propositional proof system P is defined by the arithmetic formula

$$RFN(P) = (\forall \pi)(\forall \varphi) Prf_P(\pi, \varphi) \rightarrow Taut(\varphi)$$

where

- Prf_P is a Σ^b_1-formula formalizing P-proofs
- $Taut$ is a Π^b_1-formula for propositional tautologies.
Very Strong Proof Systems

Theorem (Krajíček, Pudlák 89)

Every proof system P is simulated by a proof system of the form $EF + \Phi$.

Sketch of Proof

- Take as Φ the translations of the reflection principle of P.
- Let π be a P-proof of φ.
- Substituting the bits of π and φ into the reflection principle yields
 \[\|Prf_P(\pi, \varphi)\| \rightarrow \|Taut(\varphi)\| \]
- Prove $\|Prf_P(\pi, \varphi)\|$ in EF.
- Prove $\|Taut(\varphi)\| \rightarrow \varphi$ in EF.
- Obtain an $EF + \Phi$ proof of φ which is poly-size in $|\pi|$, $|\varphi|$.
Simulations between important propositional proof systems

optimal proof system?

Extended Frege

Frege

AC0-Frege

Cutting Planes

Resolution

Tree-Resolution

Truth table

not polynomially bounded

PCR

Polynomial Calculus

Nullstellensatz
Does TAUT have Optimal Proof Systems?

Question (Krajíček, Pudlák 89)
Does TAUT have an optimal proof system?

Some partial answers

- If \(\text{NE} = \text{coNE} \), then TAUT has optimal proof systems. [Krajíček, Pudlák 89]

- Optimal proof systems for TAUT imply complete sets for promise classes (e.g. \(\text{NP} \cap \text{Sparse}, \text{UP}, \text{disjoint NP-pairs} \)). [Köbler, Messner, Torán 03]
Definition
A class \mathbb{C} of languages has a \textit{recursive P-presentation} if there exists a recursively enumerable list N_1, N_2, \ldots of deterministic polynomial-time clocked Turing machines such that $L(N_i) \in \mathbb{C}$ for $i \in \mathbb{N}$, and, conversely, for each $A \in \mathbb{C}$ there exists an index i with $A \subseteq L(N_i)$.

Theorem (Sadowski 02)
\textit{TAUT has a p-optimal proof system if and only if the class of all P-subsets of TAUT has a recursive P-presentation.}
Cook & Krajiček (JSL 07) consider non-uniform Frege proofs.

Definition (Karp, Lipton 80)

- An advice function is a mapping \(h : \mathbb{N} \rightarrow \Sigma^* \).
- \(h(n) \) is the advice string provided by \(h \) for input length \(n \).
- For a language \(L \), \(L/h = \{ x \mid \langle x, h(|x|) \rangle \in L \} \).
- For a complexity class \(C \) and a length bound \(k : \mathbb{N} \rightarrow \mathbb{N} \), \(C/k = \{ L/h \mid L \in C, |h(n)| \leq k(n) \text{ for all } n \} \).
- \(C/log = \bigcup \{ C/k \mid k(n) = O(\log n) \} \).
- \(C/poly = \bigcup \{ C/k \mid k(n) = n^{O(1)} \} \).

Proposition (Pippenger 79)

\(L \in P/poly \iff L \) has poly-size circuits.
All languages have optimal proof systems with advice

Theorem (Cook, Krajíček 07, B, Köbler, Müller 11)

Every language L has an optimal proof system f in $\text{FP}/1$.

Proof.

Let $\langle \cdot, \ldots, \cdot \rangle$ be a polynomial-time computable tupling function on Σ^* which is length injective.

f-proofs are of the form $w = \langle u, 1^T, 1^m \rangle$ with $u, T \in \Sigma^*$ and $m \in \mathbb{N}$.

The advice bit $h(|w|)$ indicates whether the transducer T only outputs elements from L for inputs of length $|u|$.

Now, if $h(|w|) = 1$ and $T(u)$ outputs y after at most m steps, then $f(w) = y$. Otherwise, $f(w) = \top$.

If g is a proof system computed by a p-time transducer T, then f p-simulates g via the FP function $u \mapsto \langle u, 1^T, 1^p(|u|) \rangle$.

\[]
Summary

Lower Bounds

- Shown for bounded-depth Frege
- Open for Frege and stronger systems

Optimal proof systems

- Existence is open
- We have a number of interesting characterizations and consequences.
- They exist for stronger models of proof systems.
Proof Complexity – Further Connections
Motivations in Proof Complexity

Major motivations

- Separation of complexity classes
- Satisfiability algorithms (SAT-Solver)
- Proof Search – Automatizability
- Relations to bounded arithmetic
- Proving lower bounds is very challenging and interesting in its own right
Digression – Disjoint NP-Pairs

Definition (Grollmann, Selman 88)

\((A, B)\) is a disjoint NP-Pair (DNPP) if \(A, B \in \text{NP}\) and \(A \cap B = \emptyset\).

Example

Clique-Colouring pair \((CC_0, CC_1)\)

\[CC_0 = \{ (G, k) \mid G \text{ contains a clique of size } k \}\]
\[CC_1 = \{ (G, k) \mid G \text{ can be coloured with } k - 1 \text{ colours} \}\]

Definition (Grollmann, Selman 88)

\((A, B) \leq_p (C, D) \iff \text{there exists a polynomial time computable function } f \text{ such that } f(A) \subseteq C \text{ and } f(B) \subseteq D.\)
P-Separable Pairs

Definition (Grollmann, Selman 88)

(A,B) is p-separable, if there exists a set $C \in P$ such that $A \subseteq C$ and $B \cap C = \emptyset$.

Theorem (Lovász 79)

(CC_0, CC_1) is p-separable.
The RSA pair

\[RSA_0 = \{(n, e, y, i) \mid (n, e) \text{ is a valid RSA key, } \exists x \ x^e \equiv y \mod n \text{ and the } i\text{-th bit of } x \text{ is 0}\} \]

\[RSA_1 = \{(n, e, y, i) \mid \ldots \text{ is 1}\} \]

Fact
If RSA is secure then \((RSA_0, RSA_1)\) is not p-separable.
Canonical NP-Pairs

Definition (Razborov 94)

To a proof system P we associate a canonical pair:

\[
\begin{align*}
\text{Ref}(P) & = \{ (\varphi, 1^m) \mid P \vdash \leq_m \varphi \} \\
\text{Sat}^* & = \{ (\varphi, 1^m) \mid \neg \varphi \text{ is satisfiable} \}
\end{align*}
\]

Proposition

If P and S are proof systems with $P \leq S$, then

\[(\text{Ref}(P), \text{Sat}^*) \leq_p (\text{Ref}(S), \text{Sat}^*) \]

Proof.

\[(\varphi, 1^m) \mapsto (\varphi, 1^{p(m)}) \text{ where } p \text{ is the polynomial from } P \leq S. \]

The converse does not hold.
Automatizability of proof systems

Definition

P is automatizable if there exists a deterministic algorithm with

- input: a formula φ
- output: a P-proof of φ (if it exists)
- time: polynomial in the length of the shortest P-proof of φ

Alternative characterization

P is automatizable if and only if there exists a polynomial time algorithm with

- input: $(\varphi, 1^m)$
- output: a P-proof of φ if $(\varphi, 1^m) \in \text{Ref}(P)$

Corollary

If P is automatizable then $(\text{Ref}(P), SAT^*)$ is p-separable.
Proposition (B. 07)

There exists a proof system P that has a p-separable canonical pair. But P is not automatizable unless $P = \text{NP}$.

Proof.
Define the proof system P as:

$$P(\pi) = \begin{cases}
\varphi & \text{if } \pi = (\varphi, T) \text{ where } T \text{ is a truth table of } \varphi \\
\varphi \lor \top & \text{if } \pi = (\varphi, \alpha) \text{ and } \alpha \text{ is a satisfying assignment for } \varphi
\end{cases}$$

The following algorithm separates the canonical pair of P:

1. Input: $(\varphi, 1^m)$
2. IF $\varphi = \psi \lor \top$ or $\varphi = \top$ THEN output 1
3. IF $m \geq 2\|\text{Var}(\varphi)\|$ THEN
4. IF $\varphi \in \text{TAUT}$ THEN output 1
5. output 0
Proposition (Pudlák 03)

\((\text{Ref}(P), \text{SAT}^*)\) is \(p\)-separable iff there exists an automatizable proof system \(Q \geq_p P\).

Proof.
Let \((\text{Ref}(P), \text{SAT}^*)\) be separated by \(f \in \text{FP}\), i.e.

\[
\begin{align*}
(\varphi, 1^m) \in \text{Ref}(P) & \implies f(\varphi, 1^m) = 1 \\
(\varphi, 1^m) \in \text{SAT}^* & \implies f(\varphi, 1^m) = 0.
\end{align*}
\]

Define the system \(Q\) by

\[
Q(\pi) = \begin{cases}
\varphi & \text{if } \pi = (\varphi, 1^m) \text{ and } f(\varphi, 1^m) = 1 \\
\top & \text{otherwise }
\end{cases}
\]
Weak Automatizability

Proposition (Pudlák 03)

\((\text{Ref}(P), SAT^*)\) is \(p\)-separable iff there exists an automatizable proof system \(Q \geq_p P\).

Definition

A proof system \(P\) is \textit{weakly automatizable} if there exists a proof system \(Q \geq_p P\) such that \(Q\) is automatizable.

Corollary

A proof system \(P\) is weakly automatizable iff the canonical pair of \(P\) is \(p\)-separable.
Which Proof Systems are Automatizable?

A trivial positive example
The truth-table system is automatizable.

What about interesting systems?

Theorem (Krajíček & Pudlák 98)
Extended Frege systems are not weakly automatizable unless RSA is insecure.

Theorem (Bonet, Pitassi, Raz 00)
Frege systems are not weakly automatizable unless Blum integers can be factored in polynomial time (a Blum integer is the product of two primes which are both congruent 3 modulo 4).

Theorem (Bonet, Domingo, Gavaldà, Maciel, Pitassi 04)
Bounded-depth Frege systems are not weakly automatizable under cryptographic assumptions.
Automatizability of Resolution

Theorem (Beame, Karp, Pitassi, Saks 02)

Tree-like Resolution is automatizable in quasi-polynomial time.

(Quasi-polynomial time = \(n^{O(\log n)} \))

Theorem (Alekhnovich & Razborov 01, Eickmeyer, Grohe & Grübner 08)

Resolution is not automatizable unless \(\text{FPT} = \text{W}[P] \).

Open problem

Is Resolution weakly automatizable?
Motivations in Proof Complexity

Major motivations

- Separation of complexity classes
- Satisfiability algorithms (SAT-Solver)
- Proof Search – Automatizability
- Relations to bounded arithmetic
- Proving lower bounds is very challenging and interesting in its own right
Bounded Arithmetic

- First-order arithmetic theories
- Weak subsystems of Peano arithmetic
- Axiomatized by
 - A number of basic axioms describing the interplay of $+, \cdot, \leq, 0, 1, \ldots$ and
 - Some controlled amount of induction

Most important examples

- $I\Delta_0$ (induction for all bounded formulas)
- PV (formalizes poly-time computations) [Cook 75]
- $S_2^1 \subset T_2^1 \subset S_2^2 \subset T_2^2 \subset \cdots \subset S_2 = T_2$ [Buss 86]
Propositional Translations

Bounded formulas

- A bounded universal quantifier is of the form $(\forall x)(|x| \leq t \to \ldots)$ with some term t.
- Π^b_1-formulas only contain bounded universal quantifiers.
- Π^b_1-formulas describe coNP-sets.

From first-order to propositional formulas

A Π^b_1-formula $\varphi(x)$ can be translated into a sequence of propositional formulas $\|\varphi\|^n$ such that

- $\|\varphi\|^n$ has polynomial size in n;
- for each $a \in \mathbb{N}$, $\mathbb{N} \models \varphi(a)$ iff $\|\varphi\|^{|a|}(a) \in TAUT$.
Bounded Arithmetic and Propositional Proof Systems

The correspondence
An arithmetic theory T corresponds to a propositional proof system P if the following conditions are satisfied:

- For $\varphi \in \Pi_1^b$, if $T \vdash (\forall x)\varphi$, then there are poly-size P-proofs of $|\varphi|^n$.
- T proves the correctness of P, i.e. $T \vdash RFN(P)$.

Example
S_2^1 corresponds to extended Frege EF.

This correspondence can be applied to

- construct short P-proofs (upper bounds);
- show lower bounds to the proof size for P [Ajtai 94];
- show simulations between proof systems.
Uniform vs. Non-uniform Concepts

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>P, NP, coNP, ...</td>
</tr>
<tr>
<td></td>
<td>Turing machines</td>
</tr>
<tr>
<td></td>
<td>arithmetic theories</td>
</tr>
<tr>
<td></td>
<td>Π_1^b formulas</td>
</tr>
<tr>
<td>non-uniform</td>
<td>AC^0, P/poly,</td>
</tr>
<tr>
<td></td>
<td>NP/poly, ...</td>
</tr>
<tr>
<td></td>
<td>Boolean circuits</td>
</tr>
<tr>
<td></td>
<td>proof systems</td>
</tr>
<tr>
<td></td>
<td>propositional formulas</td>
</tr>
</tbody>
</table>

Our experience

Lower bounds in the non-uniform models are very hard.
Motivations in Proof Complexity

Major motivations

- Separation of complexity classes
- Satisfiability algorithms (SAT-Solver)
- Proof Search – Automatizability
- Relations to bounded arithmetic
- Proving lower bounds is very challenging and interesting in its own right
Summary

Proof Complexity

- is at the intersection of logic and complexity.
- uses concepts and intuition from algebra, geometry, …

Main Objective
study lengths of proofs

Connections to other areas

- Separation of complexity classes
- Analysis of SAT algorithms
- Proof search – Automatizability
- First-Order Logic – Bounded Arithmetic
- Proving lower bounds is hard!