ON THE BOOLEAN WIDTH OF A GRAPH: STRUCTURE AND APPLICATIONS

I. Adler, B.-M. Bui-Xuan, Y. Rabinovich, G. Renault, J.A. Telle, M. Vatshelle
WG, Ζαρός, Κρήτη, 29 June 2010
Overview of results

- Boolean width of $G(n, p)$ is $\Theta\left(\frac{(\log n)^2}{p}\right)$
- Solve a large class of problems on k-bounded Boolean width in time $O^*(2^{c \cdot k^2})$, such as
 - **Max Independent Set**,
 - **Min Dominating Set**,
 - **Max Induced k-Regular Subgraph**,
 - **H-Covering**,
 - **H-Coloring**,
 - ...

 Improving previous results by Gerber and Kobler for this class of problems (on bounded clique-width).

- Relations to other parameters
Overview of results

- Boolean width of $G(n, p)$ is $\Theta(\frac{(\log n)^2}{p})$
- Solve a large class of problems on k-bounded Boolean width in time $O^*(2^{c \cdot k^2})$, such as
 - MAX INDEPENDENT SET,
 - MIN DOMINATING SET,
 - MAX INDUCED k-REGULAR SUBGRAPH,
 - H-COVERING,
 - H-COLORING,
 - ...

Improving previous results by Gerber and Kobler for this class of problems (on bounded clique-width).
- Relations to other parameters
Overview of results

- Boolean width of $G(n, p)$ is $\Theta(\frac{(\log n)^2}{p})$
- Solve a large class of problems on k-bounded Boolean width in time $O^*(2^{c\cdot k^2})$, such as
 - **MAX INDEPENDENT SET**,
 - **MIN DOMINATING SET**,
 - **MAX INDUCED k-REGULAR SUBGRAPH**,
 - **H-COVERING**,
 - **H-COLORING**,
 - ...

 Improving previous results by Gerber and Kobler for this class of problems (on bounded clique-width).
- Relations to other parameters
Overview of results

- Boolean width of $G(n, p)$ is $\Theta\left(\frac{(\log n)^2}{p}\right)$
- Solve a large class of problems on k-bounded Boolean width in time $O^*(2^{c\cdot k^2})$, such as
 - Max Independent Set,
 - Min Dominating Set,
 - Max Induced k-Regular Subgraph,
 - H-Covering,
 - H-Coloring,
 - ...

 Improving previous results by Gerber and Kobler for this class of problems (on bounded clique-width).
- Relations to other parameters
Overview of results

- Boolean width of $G(n, p)$ is $\Theta\left(\frac{(\log n)^2}{p}\right)$
- Solve a large class of problems on k-bounded Boolean width in time $O^*(2^{c \cdot k^2})$, such as
 - MAX INDEPENDENT SET,
 - MIN DOMINATING SET,
 - MAX INDUCED k-REGULAR SUBGRAPH,
 - H-COVERING,
 - H-COLORING,
 - ...

Improving previous results by Gerber and Kobler for this class of problems (on bounded clique-width).

- Relations to other parameters
Overview of results

• Boolean width of $G(n, p)$ is $\Theta\left(\frac{(\log n)^2}{p}\right)$

• Solve a large class of problems on k-bounded Boolean width in time $O^*(2^{c \cdot k^2})$, such as
 - Max Independent Set,
 - Min Dominating Set,
 - Max Induced k-Regular Subgraph,
 - H-Covering,
 - H-Coloring,
 - ...

Improving previous results by Gerber and Kobler for this class of problems (on bounded clique-width).

• Relations to other parameters
Contents

1. Boolean width
2. Boolean width of random graphs
3. Algorithms on bounded Boolean width (if time permits)
The Boolean cost for a cut

Given a graph $G = (V, E)$, a cut is a partition (X, \overline{X}) of V such that $X \cup \overline{X} = V$. A cut (X, \overline{X}) with $V(G) = X \cup \overline{X}$ is a cut of G.

Define the neighbor set function N_X by

$$N_X : \text{Pow}(X) \to \text{Pow}((\overline{X})$$

$$A \mapsto N(A) \cap \overline{X}$$

Note: In general, N_X is neither injective nor surjective.

Definition

$$\text{Boolcost}(X) := \log_2 |\mathcal{N}_X(\text{Pow}(X))|.$$

Lemma

$$\text{Boolcost}(X) = \text{Boolcost}(\overline{X}).$$
The Boolean cost for a cut

G graph.
(X, \overline{X}) with $V(G) = X \cup \overline{X}$ is a cut of G.

Define the neighbor set function \mathcal{N}_X by

$$\mathcal{N}_X : \text{Pow}(X) \rightarrow \text{Pow}(\overline{X})$$
$$A \mapsto N(A) \cap \overline{X}$$

Note: In general, \mathcal{N}_X is neither injective nor surjective.

Definition

$\text{Boolcost}(X) := \log_2 |\mathcal{N}_X(\text{Pow}(X))|$.

Lemma

$\text{Boolcost}(X) = \text{Boolcost}(\overline{X})$.
The Boolean cost for a cut

G graph.
(X, \overline{X}) with $V(G) = X \cup \overline{X}$ is a cut of G.

Define the neighbor set function \mathcal{N}_X by

$$\mathcal{N}_X : \text{Pow}(X) \rightarrow \text{Pow}(\overline{X})$$

$$A \mapsto N(A) \cap \overline{X}$$

Note: In general, \mathcal{N}_X is neither injective nor surjective.

Definition

$\text{Boolcost}(X) := \log_2 |\mathcal{N}_X (\text{Pow}(X))| .$

Lemma

$\text{Boolcost}(X) = \text{Boolcost}(\overline{X})$.
The Boolean cost for a cut

Let G be a graph. (X, \overline{X}) with $V(G) = X \cup \overline{X}$ is a cut of G.

Define the neighbor set function \mathcal{N}_X by

$$\mathcal{N}_X : \text{Pow}(X) \rightarrow \text{Pow}(\overline{X})$$

$$A \mapsto N(A) \cap \overline{X}$$

Note: In general, \mathcal{N}_X is neither injective nor surjective.

Definition

$$\text{Boolcost}(X) := \log_2 |\mathcal{N}_X (\text{Pow}(X))| .$$

Lemma

$$\text{Boolcost}(X) = \text{Boolcost}(\overline{X}).$$
The Boolean cost for a cut

\(G \) graph.
\((X, \overline{X})\) with \(V(G) = X \cup \overline{X} \) is a cut of \(G \).

Define the neighbor set function \(\mathcal{N}_X \) by

\[
\mathcal{N}_X : \text{Pow}(X) \to \text{Pow}(\overline{X}) \\
A \mapsto N(A) \cap \overline{X}
\]

Note: In general, \(\mathcal{N}_X \) is neither injective nor surjective.

Definition

\(\text{Boolcost}(X) := \log_2 |\mathcal{N}_X(\text{Pow}(X))| \).

Lemma

\(\text{Boolcost}(X) = \text{Boolcost}(\overline{X}) \).
Boolean cost – another perspective

Let (X, \overline{X}) with $V(G) = X \cup \overline{X}$ be a cut of G.

Let $M_X =$

\[
\begin{array}{c|cc}
& \overline{X} & X \\
\hline
X & \text{zeros} & \text{ones} \\
\end{array}
\]

be the adjacency matrix of the cut.

Definition

Let $\Sigma M_X := \{ \text{Boolean sums of all subsets of row vectors} \}$. Here: $1 + 1 = 1$.

Observation

$\text{Boolcost}(X) = \log_2 |\Sigma M_X|$.
Boolean cost – another perspective

G graph.
(X, \overline{X}) with $V(G) = X \cup \overline{X}$ is a cut of G.

Let $M_X = \begin{array}{c|c}
X & \overline{X} \\
\hline
zeros & \text{zeros} \\
and & \text{ones}
\end{array}$
be the adjacency matrix of the cut.

Definition

Let $\Sigma M_X := \{ \text{Boolean sums of all subsets of row vectors} \}$. Here: $1 + 1 = 1$.

Observation

$\text{Boolcost}(X) = \log_2 |\Sigma M_X|$.
Boolean cost – another perspective

\(G \) graph.
\((X, \overline{X}) \) with \(V(G) = X \cup \overline{X} \) is a cut of \(G \).

Let \(M_X = \begin{array}{c|c}
X & \overline{X} \\
\hline
zeros & and \\
ones &
\end{array} \)
be the adjacency matrix of the cut.

Definition

Let \(\Sigma M_X := \{ \text{Boolean sums of all subsets of row vectors} \} \).
Here: \(1 + 1 = 1 \).

Observation

\(\text{Boolcost}(X) = \log_2 |\Sigma M_X| \).
Boolean cost – another perspective

G graph.
(X, \overline{X}) with $V(G) = X \cup \overline{X}$ is a cut of G.

Let $M_X = \begin{pmatrix} \overline{X} \\ X \end{pmatrix}$ be the adjacency matrix of the cut.

Definition

Let $\Sigma M_X := \{ Boolean \ sums \ of \ all \ subsets \ of \ row \ vectors \}$. Here: $1 + 1 = 1$.

Observation

$\text{Boolcost}(X) = \log_2 |\Sigma M_X|$.
Boolean width

A graph G. A decomposition tree for G is a pair (T, δ), where

- T is a cubic tree
- $\delta : \text{Leaves}(T) \to V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$:

$\text{Boolcost}(e) := \text{Boolcost}(X)$,

$\text{Boolcost}(T, \delta) := \max \{ \text{Boolcost}(e) \mid e \in E(T) \}$,

$\text{Boolw}(G) := \min \{ \text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G \}$
Boolean width

A graph G. A decomposition tree for G is a pair (T, δ), where

- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$:

- $\text{Boolcost}(e) := \text{Boolcost}(X)$,
- $\text{Boolcost}(T, \delta) := \max\{\text{Boolcost}(e) \mid e \in E(T)\}$,
- $\text{Boolw}(G) := \min\{\text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G\}$
Boolean width

G graph. A **decomposition tree** for G is a pair (T, δ), where

- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$: $\text{Boolcost}(e) := \text{Boolcost}(X)$,

$\text{Boolcost}(T, \delta) := \max\{\text{Boolcost}(e) \mid e \in E(T)\}$,

$\text{Boolw}(G) := \min\{\text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G\}$
Boolean width

G graph. A *decomposition tree* for G is a pair (T, δ), where

- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$: $
\begin{align*}
\text{Boolcost}(e) &:= \text{Boolcost}(X), \\
\text{Boolcost}(T, \delta) &:= \max\{\text{Boolcost}(e) \mid e \in E(T)\}, \\
\text{Boolw}(G) &:= \min\{\text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G\}
\end{align*}$
Boolean width

A graph G has a decomposition tree for G is a pair (T, δ), where
- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$: \(\text{Boolcost}(e) := \text{Boolcost}(X) \),
\(\text{Boolcost}(T, \delta) := \max\{ \text{Boolcost}(e) \mid e \in E(T) \} \),
\(\text{Boolw}(G) := \min\{ \text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G \} \)
Boolean width

G graph. A decomposition tree for G is a pair (T, δ), where

- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

\[\begin{align*}
\text{Defnition} & \\
\text{For } e \in E(T): \text{Boolcost}(e) := \text{Boolcost}(X), \\
\text{Boolcost}(T, \delta) := \max \{ \text{Boolcost}(e) \mid e \in E(T) \}, \\
\text{Boolw}(G) := \min \{ \text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G \}
\end{align*}\]
Boolean width

G graph. A **decomposition tree** for G is a pair \((T, \delta)\), where
- \(T\) is a cubic tree
- \(\delta : \text{Leaves}(T) \rightarrow V(G)\) is a bijection

Example

\[V(G) = \{r, s, u, v, w\}\]

Definition

For \(e \in E(T)\): \(\text{Boolcost}(e) := \text{Boolcost}(X)\),

\[
\text{Boolcost}(T, \delta) := \max\{\text{Boolcost}(e) \mid e \in E(T)\},
\]

\(\text{Boolw}(G) := \min\{\text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G\}\)
Boolean width

A graph G. A **decomposition tree** for G is a pair (T, δ), where

- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$: $\text{Boolcost}(e) := \text{Boolcost}(X)$,

$\text{Boolcost}(T, \delta) := \max\{\text{Boolcost}(e) \mid e \in E(T)\}$,

$\text{Boolw}(G) := \min\{\text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G\}$
Boolean width

G graph. A **decomposition tree** for G is a pair (T, δ), where
- T is a cubic tree
- $\delta : \text{Leaves}(T) \rightarrow V(G)$ is a bijection

Example

$V(G) = \{r, s, u, v, w\}$

Definition

For $e \in E(T)$: \(\text{Boolcost}(e) := \text{Boolcost}(X)\),

\(\text{Boolcost}(T, \delta) := \max\{\text{Boolcost}(e) \mid e \in E(T)\}\),

\(\text{Boolw}(G) := \min\{\text{Boolcost}(T, \delta) \mid (T, \delta) \text{ dec. tree for } G\}\)
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)
Boolean width \sim clique-width \sim rank-width.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- H an incidence graph, then:
 $\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H)$.

Rank-width
With our proof method: Simple proof for a similar theorem on rank-width.
A sightly stronger result was shown by Oum in Rank-width is less than or equal to branch-width using matroids.
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)

Boolean width \sim clique-width \sim rank-width.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- If H an incidence graph, then:
 $\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H)$.

Rank-width

With our proof method: Simple proof for a similar theorem on rank-width.

A sightly stronger result was shown by Oum in Rank-width is less than or equal to branch-width using matroids.
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)

Boolean width \sim *clique-width* \sim *rank-width*.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- H an incidence graph, then: $\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H)$.

Rank-width

With our proof method: Simple proof for a similar theorem on rank-width.

A sightly stronger result was shown by Oum in *Rank-width is less than or equal to branch-width* using matroids.
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)

Boolean width \sim clique-width \sim rank-width.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- If H an incidence graph, then:
 $\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H)$.

Rank-width

With our proof method: Simple proof for a similar theorem on rank-width.

A sightly stronger result was shown by Oum in *Rank-width is less than or equal to branch-width* using matroids.
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)

Boolean width \sim clique-width \sim rank-width.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- If H an incidence graph, then:
 $\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H)$.

Rank-width

With our proof method: Simple proof for a similar theorem on rank-width.

A sightly stronger result was shown by Oum in Rank-width is less than or equal to branch-width using matroids.
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)

Boolean width \sim clique-width \sim rank-width.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- H an incidence graph, then:
 $\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H)$.

Rank-width

With our proof method: Simple proof for a similar theorem on rank-width.

A sightly stronger result was shown by Oum in Rank-width is less than or equal to branch-width using matroids.
Boolean width: relation to other graph invariants

Fact (Bui-Xuan, Telle and Vatshelle)

Boolean width \sim clique-width \sim rank-width.

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

- $\text{Boolw}(G) \leq \text{branch-width}(G) \leq 2 \cdot \text{Boolw}(I(G))$.
- If H is an incidence graph, then:
 \[\text{Boolw}(H) \leq \text{branch-width}(H) \leq 2 \cdot \text{Boolw}(H). \]

Rank-width

With our proof method: Simple proof for a similar theorem on rank-width.

A sightly stronger result was shown by Oum in *Rank-width is less than or equal to branch-width* using matroids.
Contents

1. Boolean width
2. Boolean width of random graphs
3. Algorithms on bounded Boolean width
Random Graphs

Definition
\(G(n, p) := \text{random graph on } n \text{ vertices where every edge is chosen independently at random with probability } p. \)

Fact
Asymptotically almost surely, \(G(n, p) \) has
- tree-width / branch-width \(\Theta(n) \) (Bodlaender, Kloks 1992).
- rank-width \(\Theta(n) \) (Lee, Lee, Oum 2009).
- clique-width \(\Theta(n) \) (Johansson 1998).

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)
Asymptotically almost surely, \(\text{Boolw}(G(n, p)) = \Theta\left(\frac{(\log n)^2}{p}\right) \).
Random Graphs

Definition
$G(n, p) := \text{random graph on } n \text{ vertices where every edge is chosen independently at random with probability } p.$

Fact
Asymptotically almost surely, $G(n, p)$ has
- tree-width / branch-width $\Theta(n)$ (Bodlaender, Kloks 1992).
- rank-width $\Theta(n)$ (Lee, Lee, Oum 2009).
- clique-width $\Theta(n)$ (Johansson 1998).

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)
Asymptotically almost surely, $\text{Boolw}(G(n, p)) = \Theta(\frac{(\log n)^2}{p})$.
Random Graphs

Definition

\[G(n, p) := \text{random graph on } n \text{ vertices where every edge is chosen independently at random with probability } p. \]

Fact

Asymptotically almost surely, \(G(n, p) \) has

- tree-width / branch-width \(\Theta(n) \) (Bodlaender, Kloks 1992).
- rank-width \(\Theta(n) \) (Lee, Lee, Oum 2009).
- clique-width \(\Theta(n) \) (Johansson 1998).

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

Asymptotically almost surely,
\[\text{Boolw}(G(n, p)) = \Theta\left(\frac{(\log n)^2}{p}\right). \]
Random Graphs

Definition

\(G(n, p) := \text{random graph on } n \text{ vertices where every edge is chosen independently at random with probability } p. \)

Fact

Asymptotically almost surely, \(G(n, p) \) has

- tree-width / branch-width \(\Theta(n) \) (Bodlaender, Kloks 1992).
- rank-width \(\Theta(n) \) (Lee, Lee, Oum 2009).
- clique-width \(\Theta(n) \) (Johansson 1998).

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

Asymptotically almost surely, \(\text{Boolw}(G(n, p)) = \Theta\left(\frac{(\log n)^2}{p}\right) \).
Boolean width of random graphs

Theorem

Asymptotically almost surely, \(\text{Boolw}(G(n, p)) = \Theta\left(\frac{(\log n)^2}{p}\right) \).

Proof outline:

Claim (upper bound): a.a.s. any dec. tree for \(G := G(n, p) \) has \(\text{Boolcost} \mathcal{O}\left(\frac{(\log n)^2}{p}\right) \).

Claim (lower bound): a.a.s. any dec. tree for \(G := G(n, p) \) has a cut with \(\text{Boolcost} \Omega\left(\frac{(\log n)^2}{p}\right) \).
Boolean width of random graphs

Theorem
Asymptotically almost surely, $\text{Boolw}(G(n, p)) = \Theta\left(\frac{(\log n)^2}{p}\right)$.

Proof outline:

Claim (upper bound): a.a.s. any dec. tree for $G := G(n, p)$ has $\text{Boolcost} = O\left(\frac{(\log n)^2}{p}\right)$.

Claim (lower bound): a.a.s. any dec. tree for $G := G(n, p)$ has a cut with $\text{Boolcost} = \Omega\left(\frac{(\log n)^2}{p}\right)$.
Boolean width of random graphs

Theorem

Asymptotically almost surely, $\text{Boolw}(G(n, p)) = \Theta\left(\frac{(\log n)^2}{p}\right)$.

Proof outline:

Claim (upper bound): a.a.s. any dec. tree for $G := G(n, p)$ has $\text{Boolcost} \ O\left(\frac{(\log n)^2}{p}\right)$.

Claim (lower bound): a.a.s. any dec. tree for $G := G(n, p)$ has a cut with $\text{Boolcost} \ \Omega\left(\frac{(\log n)^2}{p}\right)$.
Boolean width of random graphs: Upper bound

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} = O\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have $\text{Boolcost}(X) = O\left(\frac{(\log n)^2}{p}\right)$.

Let $k := \lceil \log n \rceil$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s. $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = O((\log n)^2)$.
Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have
$\text{Boolcost}(X) = \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Let $k := \lfloor \log n \rfloor$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s $\left| N(A) \cap \overline{X} \right| \geq \left| \overline{X} \right| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = \mathcal{O}\left((\log n)^2\right)$.

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} \in O\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have $\text{Boolcost}(X) = O\left(\frac{(\log n)^2}{p}\right)$.
Let $k := \lfloor \log n \rfloor$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s. $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = O\left((\log n)^2\right)$.

\[\square \]
Boolean width of random graphs: Upper bound

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} = O\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have
$\text{Boolcost}(X) = O\left(\frac{(\log n)^2}{p}\right)$.
Let $k := \lfloor \log n \rfloor$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s. $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$.
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is
 $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^\log n = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = O\left((\log n)^2\right)$.
Boolean width of random graphs: Upper bound

Claim (upper bound)

A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} = \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Proof.

Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have

\[
\text{Boolcost}(X) = \mathcal{O}\left(\frac{(\log n)^2}{p}\right).
\]

Let $k := \lfloor \log n \rfloor$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,

 hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.

 Hence a.a.s. the number of subsets of \overline{X} is $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^\log n = 2 \cdot 2^{(\log n)^2}$.

- Taking log yields: $\text{Boolcost}(X) = \mathcal{O}\left((\log n)^2\right)$.

\[\square\]
Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} = \mathcal{O}(\frac{(\log n)^2}{p})$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have
\[\text{Boolcost}(X) = \mathcal{O}(\frac{(\log n)^2}{p}).\]
Let $k := \lceil \log n \rceil$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = \mathcal{O}\left((\log n)^2\right)$.

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} \ O\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have $\text{Boolcost}(X) = O\left(\frac{(\log n)^2}{p}\right)$.

Let $k := \lfloor \log n \rfloor$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \Sigma_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s. $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \Sigma_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is $\leq 2 \cdot \Sigma_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = O\left(\left(\log n\right)^2\right)$.
Boolean width of random graphs: Upper bound

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} \in \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have

$\text{Boolcost}(X) = \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Let $k := \lfloor \log n \rfloor$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is
 $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.
Boolean width of random graphs: Upper bound

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} \, O\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have

$$\text{Boolcost}(X) = O\left(\frac{(\log n)^2}{p}\right).$$

Let $k := \lceil \log n \rceil$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.

- Lemma: If $|A| > k$, a.a.s $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,

- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.

- Hence a.a.s. the number of subsets of \overline{X} is
 $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.

- Taking log yields: $\text{Boolcost}(X) = O\left((\log n)^2\right)$.

\qed
Boolean width of random graphs: Upper bound

Claim (upper bound)
A.a.s. any dec. tree for $G(n, p)$ has $\text{Boolcost} \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Proof.
Show: all cuts (X, \overline{X}) of $G(n, p)$ a.a.s. have

$\text{Boolcost}(X) = \mathcal{O}\left(\frac{(\log n)^2}{p}\right)$.

Let $k := \lceil \log n \rceil$. Let $p := 1/2$ for simplicity.

- The sets $A \subseteq X$ with $|A| \leq k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Lemma: If $|A| > k$, a.a.s $|N(A) \cap \overline{X}| \geq |\overline{X}| - k$,
- hence the sets $A \subseteq X$ with $|A| > k$ contribute $\leq \sum_{i=0}^{k} \binom{n}{i}$ subsets of \overline{X}.
- Hence a.a.s. the number of subsets of \overline{X} is
 $\leq 2 \cdot \sum_{i=0}^{k} \binom{n}{i} \leq 2 \cdot n^k = 2 \cdot n^{\log n} = 2 \cdot 2^{(\log n)^2}$.
- Taking log yields: $\text{Boolcost}(X) = \mathcal{O}\left((\log n)^2\right)$.
Claim (Lower bound)
A.a.s. any dec. tree for $G(n, p)$ has a cut with $\text{Boolcost} \Omega\left(\frac{(\log n)^2}{p}\right)$.

Proof.

- Show: A.a.s. any cut (X, \overline{X}) of $G := G(n, p)$ has $\text{Boolcost}(X) = \Omega\left(\frac{\log^2 n}{p}\right)$.

- Note: Every dec. tree has a cut (X, \overline{X}) with $|X| \approx \frac{1}{3}|V(G)|$ and $|\overline{X}| \approx \frac{2}{3}|V(G)|$.

- Suffices to show: a.a.s. all such $(\frac{1}{3}, \frac{2}{3})$-cuts (X, \overline{X}) satisfy $\text{Boolcost}(X) = \Omega\left((\log n)^2\right)$.
Claim (Lower bound)
A.a.s. any dec. tree for $G(n, p)$ has a cut with $\text{Boolcost} \Omega\left(\frac{(\log n)^2}{p}\right)$.

Proof.

- Show: A.a.s. any cut (X, \overline{X}) of $G := G(n, p)$ has $\text{Boolcost}(X) = \Omega\left(\frac{\log^2 n}{p}\right)$.

- Note: Every dec. tree has a cut (X, \overline{X}) with $|X| \approx \frac{1}{3}|V(G)|$ and $|\overline{X}| \approx \frac{2}{3}|V(G)|$.

- Suffices to show: a.a.s. all such $(\frac{1}{3}, \frac{2}{3})$-cuts (X, \overline{X}) satisfy $\text{Boolcost}(X) = \Omega\left((\log n)^2\right)$.
Claim (Lower bound)

A.a.s. any dec. tree for $G(n, p)$ has a cut with $\text{Boolcost} \Omega\left(\frac{(\log n)^2}{p}\right)$.

Proof.

• Show: A.a.s. any cut (X, \overline{X}) of $G := G(n, p)$ has $\text{Boolcost}(X) = \Omega\left(\frac{\log^2 n}{p}\right)$.

• Note: Every dec. tree has a cut (X, \overline{X}) with $|X| \approx \frac{1}{3}|V(G)|$ and $|\overline{X}| \approx \frac{2}{3}|V(G)|$.

• Suffices to show: a.a.s. all such $(\frac{1}{3}, \frac{2}{3})$-cuts (X, \overline{X}) satisfy $\text{Boolcost}(X) = \Omega\left((\log n)^2\right)$.
Claim (Lower bound)
A.a.s. any dec. tree for $G(n, p)$ has a cut with $\text{Boolcost} \Omega\left(\frac{(\log n)^2}{p}\right)$.

Proof.

- Show: A.a.s. any cut (X, \overline{X}) of $G := G(n, p)$ has
 $\text{Boolcost}(X) = \Omega\left(\frac{\log^2 n}{p}\right)$.

- Note: Every dec. tree has a cut (X, \overline{X}) with $|X| \approx \frac{1}{3}|V(G)|$ and $|\overline{X}| \approx \frac{2}{3}|V(G)|$.

- Suffices to show: a.a.s. all such $(\frac{1}{3}, \frac{2}{3})$-cuts (X, \overline{X}) satisfy $\text{Boolcost}(X) = \Omega\left((\log n)^2 \right)$.
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega((\log n)^2).
\]

Proof.
- Show: Lemma holds for a cut with ‘good’ probability. (\(\sim\) for all cuts.)
- Show: a.a.s., \(N_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking \(\log\).) For this:
 - Define a digraph on \(N_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\sim\) bound on the degree.
- A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
- Hence a.a.s., \(N_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Lemma
A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[\text{Boolcost}(X) = \Omega((\log n)^2). \]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\sim\) for all cuts.)
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking \(\log\)). For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\sim\) bound on the degree.
- A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
- Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Lemma

A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega((\log n)^2).
\]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\sim\) for all cuts.)
 - Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\sim\) bound on the degree.
 - A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
 - Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega((\log n)^2).
\]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\rightsquigarrow\) for all cuts.)
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\rightsquigarrow\) bound on the degree.
 - A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
 - Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all $\left(\frac{1}{3}, \frac{2}{3}\right)$-cuts (X, \overline{X}) of $G(n, p)$ satisfy

$$
\text{Boolcost}(X) = \Omega((\log n)^2).
$$

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\sim for all cuts.)
- Show: a.a.s., $\mathcal{N}_X(Pow(X))$ contains an \subseteq-antichain of size $2^{(\log n)^2}$ (the Lemma then follows by taking log.) For this:
 - Define a digraph on $\mathcal{N}_X(Pow(X))$ by interpreting \subseteq as \leftarrow.
 - Remove some carefully selected vertices ("blemishes") from the digraph \sim bound on the degree.
 - A.a.s. the remaining digraph contains an independent set of size $2^{(\log n)^2}$.
 - Hence a.a.s., $\mathcal{N}_X(Pow(X))$ has an \subseteq-antichain of size $2^{(\log n)^2}$.
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[\text{Boolcost}(X) = \Omega((\log n)^2). \]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\sim\) for all cuts.)
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\sim\) bound on the degree.
 - A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
 - Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega((\log n)^2).
\]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\sim\) for all cuts.)
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
- Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
- Remove some carefully selected vertices (”blemishes”) from the digraph \(\sim\) bound on the degree.
- A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
- Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Boolean width of random graphs: Lower bound

Lemma

A.a.s. all \((\frac{1}{3}, \frac{2}{3})\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega((\log n)^2).
\]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\leadsto\) for all cuts.)
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\leadsto\) bound on the degree.
- A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
- Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all \((1/3, 2/3)\)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega((\log n)^2).
\]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. \((\sim)\) for all cuts.
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\sim\) bound on the degree.
- A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
 - Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Boolean width of random graphs: Lower bound

Lemma
A.a.s. all \(\left(\frac{1}{3}, \frac{2}{3} \right) \)-cuts \((X, \overline{X})\) of \(G(n, p)\) satisfy

\[
\text{Boolcost}(X) = \Omega\left((\log n)^2\right).
\]

Proof.

- Show: Lemma holds for a cut with ‘good’ probability. (\(\leadsto\) for all cuts.)
- Show: a.a.s., \(\mathcal{N}_X(Pow(X))\) contains an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\) (the Lemma then follows by taking log.) For this:
 - Define a digraph on \(\mathcal{N}_X(Pow(X))\) by interpreting \(\subseteq\) as \(\leftarrow\).
 - Remove some carefully selected vertices ("blemishes") from the digraph \(\leadsto\) bound on the degree.
- A.a.s. the remaining digraph contains an independent set of size \(2^{(\log n)^2}\).
- Hence a.a.s., \(\mathcal{N}_X(Pow(X))\) has an \(\subseteq\)-antichain of size \(2^{(\log n)^2}\).
Contents

1. Boolean width
2. Boolean width of random graphs
3. Algorithms on bounded Boolean width (if time permits)
Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix. Let D be $q \times q$. A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that for every $x \in V_i$: $|N(x) \cap V_j| \in D[i, j]$.

Example

$$D_{IS} = \begin{pmatrix} \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} \end{pmatrix}$$

Then (X, \overline{X}) is a D_{IS}-partition of G \iff X is an independent set in G. Why?

MAX INDEPENDENT SET: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of $G.$
Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix.

Let D be $q \times q$.

A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that f.a.

$i, j \leq q$: for every $x \in V_i$: $|N(x) \cap V_j| \in D[i, j]$.

Example

$$D_{IS} = \left(\begin{array}{cc} \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} \end{array} \right)$$

Then (X, \overline{X}) is a D_{IS}-partition of $G \iff X$ is an independent set in G.

Why?

MAX INDEPENDENT SET: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.

Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix.

Let D be $q \times q$.

A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that f.a. $i, j \leq q$:

$$\text{for every } x \in V_i: |N(x) \cap V_j| \in D[i, j].$$

Example

$$D_{IS} = \begin{pmatrix} \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} \end{pmatrix}$$

Then (X, \overline{X}) is a D_{IS}-partition of G \iff X is an independent set in G.

Why?

Max Independent Set: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.
Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix.

Let D be $q \times q$.

A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that f.a. $i, j \leq q$:

$$\text{for every } x \in V_i: |N(x) \cap V_j| \in D[i,j].$$

Example

$$D_{IS} = \left(\begin{array}{cc} \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} \end{array} \right)$$

Then (X, \overline{X}) is a D_{IS}-partition of $G \iff X$ is an independent set in G.

Why?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>\overline{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>${0}$</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>\overline{X}</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
</tr>
</tbody>
</table>

Max Independent Set: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.
Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix.

Let D be $q \times q$.

A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that f.a. $i, j \leq q$:

for every $x \in V_i$: $|N(x) \cap V_j| \in D[i, j]$.

Example

$$D_{IS} = \begin{pmatrix}
\{0\} & \mathbb{N} \\
\mathbb{N} & \mathbb{N}
\end{pmatrix}$$

Then (X, \overline{X}) is a D_{IS}-partition of G \iff X is an independent set in G.

Why?

Max Independent Set: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.
Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix.

Let D be $q \times q$.

A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that for every $x \in V_i$:

$$|N(x) \cap V_j| \in D[i, j].$$

Example

$$D_{IS} = \begin{pmatrix}
\{0\} & \mathbb{N} \\
\mathbb{N} & \mathbb{N}
\end{pmatrix}$$

Then (X, \overline{X}) is a D_{IS}-partition of $G \iff X$ is an independent set in G.

Why?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>\overline{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>${0}$</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>\overline{X}</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
</tr>
</tbody>
</table>

MAX INDEPENDENT SET: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.
Degree Constraint Matrix

A square matrix D with entries being finite or cofinite subsets of \mathbb{N} is called a degree constraint matrix.

Let D be $q \times q$.

A D-partition of G is a partition (V_1, \ldots, V_q) of $V(G)$ such that f.a. $i, j \leq q$:

for every $x \in V_i$: $\left| N(x) \cap V_j \right| \in D[i, j]$.

Example

$D_{IS} = \left(\begin{array}{cc} \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} \end{array} \right)$

Then (X, \overline{X}) is a D_{IS}-partition of $G \iff X$ is an independent set in G.

Why?

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>\overline{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>${0}$</td>
</tr>
<tr>
<td>\overline{X}</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
</tr>
</tbody>
</table>

Max Independent Set: Given G, find maximal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997. Let D be a 2×2 degree constraint matrix.

OPT-D-PARTITIONING

<table>
<thead>
<tr>
<th>Input:</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task:</td>
<td>Find optimal size of an $X \subseteq V(G)$, s.t. (X, \bar{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Problems within this framework

- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE and MAX PERFECT CODE**
- ...
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997. Let D be a 2×2 degree constraint matrix.

OPT-D-PARTITIONING

| Input: | G |
| Task: | Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G. |

Problems within this framework

- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE and MAX PERFECT CODE**
- ...
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a 2×2 degree constraint matrix.

<table>
<thead>
<tr>
<th>OPT-\textit{D-PARTITIONING}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: G</td>
</tr>
<tr>
<td>Task: Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Problems within this framework
- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE and MAX PERFECT CODE**
- \ldots
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997. Let D be a 2×2 degree constraint matrix.

<table>
<thead>
<tr>
<th>OPT-D-PARTITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: G</td>
</tr>
<tr>
<td>Task: Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Problems within this framework

- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE and MAX PERFECT CODE**
- ...
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997. Let D be a 2×2 degree constraint matrix.

<table>
<thead>
<tr>
<th>OPT-D-PARTITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: G</td>
</tr>
<tr>
<td>Task: Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Problems within this framework

- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE** and **MAX PERFECT CODE**
- ...
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997.

Let D be a 2×2 degree constraint matrix.

<table>
<thead>
<tr>
<th>OPT-D-PARTITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: G</td>
</tr>
<tr>
<td>Task: Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Problems within this framework

- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE and MAX PERFECT CODE**
- ...
Vertex subset problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a 2×2 degree constraint matrix.

<table>
<thead>
<tr>
<th>OPT-D-PARTITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: G</td>
</tr>
<tr>
<td>Task: Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Problems within this framework

- **MIN DOMINATING SET**
- **MAX INDUCED k-REGULAR SUBGRAPH**
- **MIN PERFECT CODE and MAX PERFECT CODE**
- ...
Boolean width and vertex subset problems

Let D be a 2×2 degree constraint matrix.
Let \mathcal{C} be a class of graphs of b-bounded Boolean width.

\begin{center}
\begin{tabular}{|l|}
\hline
\textsc{Opt-D-Partitioning(\mathcal{C})} \\
\hline
Input: & $G \in \mathcal{C}$ and a decomp. witnessing $\text{boolw}(G) \leq b$ \\
Task: & Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G. \\
\hline
\end{tabular}
\end{center}

\textbf{Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)}

\textsc{Opt-D-Partitioning(\mathcal{C})} can be solved in time

$$O(n \cdot m + n \cdot b \cdot 2^{c \cdot b^2}),$$

where $n = |V(G)|$, $m = |E(G)|$, and c a constant.
Boolean width and vertex subset problems

Let D be a 2×2 degree constraint matrix. Let \mathcal{C} be a class of graphs of b-bounded Boolean width.

OPT-D-PARTITIONING(\mathcal{C})

<table>
<thead>
<tr>
<th>Input:</th>
<th>$G \in \mathcal{C}$ and a decomp. witnessing $\text{boolw}(G) \leq b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task:</td>
<td>Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

OPT-D-PARTITIONING(\mathcal{C}) can be solved in time

$$O(n \cdot m + n \cdot b \cdot 2^{c \cdot b^2}),$$

where $n = |V(G)|$, $m = |E(G)|$, and c a constant.
Boolean width and vertex subset problems

Let D be a 2×2 degree constraint matrix.
Let \mathcal{C} be a class of graphs of b-bounded Boolean width.

OPT-D-PARTITIONING(\mathcal{C})

<table>
<thead>
<tr>
<th>Input:</th>
<th>$G \in \mathcal{C}$ and a decomp. witnessing $\text{boolw}(G) \leq b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task:</td>
<td>Find optimal size of an $X \subseteq V(G)$, s.t. (X, \overline{X}) is a D_{IS}-partition of G.</td>
</tr>
</tbody>
</table>

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

OPT-D-PARTITIONING(\mathcal{C}) can be solved in time

$$O(n \cdot m + n \cdot b \cdot 2^{c \cdot b^2}),$$

where $n = |V(G)|$, $m = |E(G)|$, **and** c **a constant.**
Vertex partitioning problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a $q \times q$ degree constraint matrix.

Example

H-COLOURING $M(H) :=$ incidence matrix of H, but: replace all 1s with \mathbb{N}s and 0s with $\{0\}$s. Then:

$\left(V_1, \ldots, V_{|V(H)|} \right)$ is an $M(H)$-partition of $G \iff$ there is a homomorphism from G to H.

$$M(K_3) = \begin{pmatrix} \{0\} & \mathbb{N} & \mathbb{N} \\ \mathbb{N} & \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} & \{0\} \end{pmatrix}$$

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>${0}$</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>V_2</td>
<td>\mathbb{N}</td>
<td>${0}$</td>
</tr>
<tr>
<td>V_2</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
</tr>
</tbody>
</table>
Vertex partitioning problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a $q \times q$ degree constraint matrix.

Example

H-COLOURING $M(H) :=$ incidence matrix of H, but: replace all 1s with \mathbb{N}s and 0s with $\{0\}$s. Then:

$(V_1, \ldots, V_{|V(H)|})$ is an $M(H)$-partition of G \iff there is a homomorphism from G to H.

\[
M(K_3) = \begin{pmatrix}
\{0\} & N & N \\
N & \{0\} & N \\
N & N & \{0\}
\end{pmatrix}
\quad
\begin{array}{c|ccc}
V_1 & V_2 & V_3 \\
V_1 & \{0\} & N & N \\
V_2 & N & \{0\} & N \\
V_2 & N & N & \{0\}
\end{array}
\]
Vertex partitioning problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a $q \times q$ degree constraint matrix.

Example

H-COLOURING $M(H) :=$ incidence matrix of H, but:
replace all 1s with Ns and 0s with $\{0\}$s. Then:

$$(V_1, \ldots, V_{|V(H)|})$$ is an $M(H)$-partition of $G \iff$ there is a
homomorphism from G to H.

$$M(K_3) = \left(\begin{array}{ccc}
\{0\} & N & N \\
N & \{0\} & N \\
N & N & \{0\}
\end{array} \right)$$

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>${0}$</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>V_2</td>
<td>N</td>
<td>${0}$</td>
<td>N</td>
</tr>
<tr>
<td>V_2</td>
<td>N</td>
<td>N</td>
<td>${0}$</td>
</tr>
</tbody>
</table>
Vertex partitioning problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a $q \times q$ degree constraint matrix.

Example

H-COLOURING $M(H) :=$ incidence matrix of H, but:
replace all 1s with $\mathbb{N}s$ and 0s with $\{0\}s$. Then:

$(V_1, \ldots, V_{|V(H)|})$ is an $M(H)$-partition of $G \iff$ there is a homomorphism from G to H.

$$M(K_3) = \begin{pmatrix}
\{0\} & \mathbb{N} & \mathbb{N} \\
\mathbb{N} & \{0\} & \mathbb{N} \\
\mathbb{N} & \mathbb{N} & \{0\}
\end{pmatrix}$$

<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>{0}</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>V_2</td>
<td>\mathbb{N}</td>
<td>{0}</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>V_2</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
<td>{0}</td>
</tr>
</tbody>
</table>
Vertex partitioning problems

Framework introduced by Proskurowski and Telle in 1997.
Let D be a $q \times q$ degree constraint matrix.

Example

H-COLOURING $M(H) :=$ incidence matrix of H, but: replace all 1s with \mathbb{N}s and 0s with $\{0\}$s. Then:

$(V_1, \ldots, V_{|V(H)|})$ is an $M(H)$-partition of G \iff there is a homomorphism from G to H.

$$M(K_3) = \left(\begin{array}{cccc}
\{0\} & \mathbb{N} & \mathbb{N} \\
\mathbb{N} & \{0\} & \mathbb{N} \\
\mathbb{N} & \mathbb{N} & \{0\}
\end{array} \right)$$

<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>${0}$</td>
<td>\mathbb{N}</td>
</tr>
<tr>
<td>V_2</td>
<td>\mathbb{N}</td>
<td>${0}$</td>
</tr>
<tr>
<td>V_2</td>
<td>\mathbb{N}</td>
<td>\mathbb{N}</td>
</tr>
</tbody>
</table>
Vertex partitioning problems

Framework introduced by Proskurowski and Telle in 1997. Let D be a $q \times q$ degree constraint matrix.

Example

H-COLOURING $M(H) := \text{incidence matrix of } H$, but: replace all 1s with \mathbb{N}s and 0s with $\{0\}$s. Then:

$(V_1, \ldots, V_{|V(H)|})$ is an $M(H)$-partition of $G \iff$ there is a homomorphism from G to H.

$$M(K_3) = \begin{pmatrix} \{0\} & \mathbb{N} & \mathbb{N} \\ \mathbb{N} & \{0\} & \mathbb{N} \\ \mathbb{N} & \mathbb{N} & \{0\} \end{pmatrix}$$

$$\begin{array}{c|ccc} & V_1 & V_2 & V_3 \\ \hline V_1 & \{0\} & \mathbb{N} & \mathbb{N} \\ V_2 & \mathbb{N} & \{0\} & \mathbb{N} \\ V_2 & \mathbb{N} & \mathbb{N} & \{0\} \end{array}$$
Vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix.

<table>
<thead>
<tr>
<th>D-PARTITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: G</td>
</tr>
<tr>
<td>Question: Does G have a D-partition?</td>
</tr>
</tbody>
</table>

Problems within this framework

- k-COLORING
- H-COLORING
- H-COVERING
- ...
Vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix.

D-PARTITIONING

<table>
<thead>
<tr>
<th>Input:</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>Does G have a D-partition?</td>
</tr>
</tbody>
</table>

Problems within this framework

- k-COLORING
- H-COLORING
- H-COVERING
- ...
Vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix.

\[
\begin{array}{|c|c|}
\hline
\text{D-PARTITIONING} & \\
\hline
\text{Input:} & G \\
\text{Question:} & \text{Does } G \text{ have a } D\text{-partition?} \\
\hline
\end{array}
\]

Problems within this framework

- k-COLORING
- H-COLORING
- H-COVERING
- ...
Vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix.

<table>
<thead>
<tr>
<th>D-PARTITIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>Question:</td>
</tr>
</tbody>
</table>

Problems within this framework

- k-COLORING
- H-COLORING
- H-COVERING
- ...
Vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix.

D-PARTITIONING

<table>
<thead>
<tr>
<th>Input:</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>Does G have a D-partition?</td>
</tr>
</tbody>
</table>

Problems within this framework

- k-COLORING
- H-COLORING
- H-COVERING
- ...
Vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix.

D-PARTITIONING

<table>
<thead>
<tr>
<th>Input:</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>Does G have a D-partition?</td>
</tr>
</tbody>
</table>

Problems within this framework

- k-COLORING
- H-COLORING
- H-COVERING
- ...
Boolean width and vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix. Let \mathcal{C} be a class of graphs of b-bounded Boolean width.

<table>
<thead>
<tr>
<th>D-PARTITIONING(\mathcal{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $G \in \mathcal{C}$ and a decomp. witnessing $\text{boolw}(G) \leq b$</td>
</tr>
<tr>
<td>Question: Does G have a D-partition?</td>
</tr>
</tbody>
</table>

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

D-PARTITIONING(\mathcal{C}) can be solved in time

$$O(n \cdot m + n \cdot b \cdot 2^{c \cdot b^2}),$$

where $n = |V(G)|$, $m = |E(G)|$, and c a constant.
Boolean width and vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix. Let \mathcal{C} be a class of graphs of b-bounded Boolean width.

<table>
<thead>
<tr>
<th>D-PARTITIONING(\mathcal{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $G \in \mathcal{C}$ and a decomp. witnessing $\text{boolw}(G) \leq b$</td>
</tr>
<tr>
<td>Question: Does G have a D-partition?</td>
</tr>
</tbody>
</table>

Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)

D-PARTITIONING(\mathcal{C}) can be solved in time

$$\mathcal{O}(n \cdot m + n \cdot b \cdot 2^{c \cdot b^2}),$$

where $n = |V(G)|$, $m = |E(G)|$, and c a constant.
Boolean width and vertex partitioning problems

Let D be a $q \times q$ degree constraint matrix. Let \mathcal{C} be a class of graphs of b-bounded Boolean width.

\[
\text{\textsc{D-Partitioning}(C)}
\]

<table>
<thead>
<tr>
<th>Input:</th>
<th>$G \in \mathcal{C}$ and a decomp. witnessing $\text{boolw}(G) \leq b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question:</td>
<td>Does G have a D-partition?</td>
</tr>
</tbody>
</table>

\textbf{Theorem (A., Bui-Xuan, Rabinovich, Renault, Telle, Vatshelle)}

\textsc{D-Partitioning}(\mathcal{C}) can be solved in time

\[
\mathcal{O}(n \cdot m + n \cdot b \cdot 2^{c \cdot b^2}),
\]

where $n = |V(G)|$, $m = |E(G)|$, and c a constant.
Σας ευχαριστώ πολύ!