TIGHT BOUNDS FOR LINKAGES IN PLANAR GRAPHS

Isolde Adler
Goethe University Frankfurt

joint work with Stavros Kolliopoulos, Philipp Krause, Daniel Lokshtanov, Saket Saurabh, Dimitrios Thilikos
Outline

1. Introduction: Disjoint paths and irrelevant vertices
2. Our results
3. Upper bound in planar graphs
4. Lower bound
5. Conclusion
Graphs are . . .

finite, undirected and simple.
Graphs are . . .

finite, undirected and simple.
Graphs are . . .

finite, undirected and simple.
The size of an \((n \times n)\)-grid is \(n\).
The size of an \((n \times n)\)-grid is \(n\).
The size of a subdivided \((n \times n)\)-grid is \(n\).
Subdivided \((7 \times 7)\)-grid

The size of a subdivided \((n \times n)\)-grid is \(n\).
The Disjoint Paths Problem

DISJOINTPATHS

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Applications: chip design, routing, transportation and telecommunication networks, . . .

Example

An instance of DISJOINTPATHS with $k = 2$:

![Graph diagram]
The Disjoint Paths Problem

DISJOINTPATHS

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Applications: chip design, routing, transportation and telecommunication networks, . . .

Example

An instance of DISJOINTPATHS with $k = 2$:

![Graph with terminals S_1, T_1, S_2, T_2 and disjoint paths between them.](image)
The Disjoint Paths Problem

DISJOINTPATHS

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Applications: chip design, routing, transportation and telecommunication networks, . . .

Example

An instance of DISJOINTPATHS with $k = 2$:

![Graph with terminals s_1, s_2, t_1, t_2 and disjoint paths drawn between them.](image)
The Disjoint Paths Problem

DISJOINTPATHS

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Applications: chip design, routing, transportation and telecommunication networks, …

Example

An instance of DISJOINTPATHS with $k = 2$:

![Graph Diagram]

… it’s a ‘no’-instance.
The Disjoint Paths Problem

DisjointPaths

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Applications: chip design, routing, transportation and telecommunication networks, . . .

Example

An instance of DisjointPaths with $k = 2$:

![Graph Diagram]

. . . it’s a ‘no’-instance.
Notice: there are two disjoint paths from the set \(\{ s_1, s_2 \} \) to \(\{ t_1, t_2 \} \).
Disjoint Paths Problem: Example

An instance of \textsc{DisjointPaths} with $k = 5$:
Disjoint Paths Problem: Example

An instance of DISJOINTPATHS with $k = 5$:
Disjoint Paths Problem: Example

An instance of DISJOINTPATHS with \(k = 5 \):

\[\text{...it's a 'yes'-instance.} \]
Disjoint Paths Problem

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

If k is part of the input. . .

- **DISJOINTPATHS** is NP complete (Karp 1975)
- **DISJOINTPATHS** remains NP complete on planar graphs (Lynch 1975)
Parameterized Disjoint Paths Problem

<table>
<thead>
<tr>
<th>p-DISJOINTPATHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$</td>
</tr>
<tr>
<td>Parameter: k</td>
</tr>
<tr>
<td>Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?</td>
</tr>
</tbody>
</table>

Theorem (Robertson, Seymour 1983–today)

p-DISJOINTPATHS has a cubic FPT algorithm: there is a computable function f such that the algorithm runs in time $f(k) \cdot |V(G)|^3$.
Parameterized Disjoint Paths Problem

\begin{itemize}
\item **Input:** Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$
\item **Parameter:** k
\item **Question:** Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?
\end{itemize}

Theorem (Robertson, Seymour 1983–today)

\texttt{p-DISJOINTPATHS} has a cubic FPT algorithm: there is a computable function f such that the algorithm runs in time $f(k) \cdot |V(G)|^3$.

\[\text{Theorem (Robertson, Seymour 1983–today)} \]

\texttt{p-DISJOINTPATHS} \textit{has a cubic FPT algorithm: there is a computable function f such that the algorithm runs in time $f(k) \cdot |V(G)|^3$.}
Theorem (Robertson, Seymour 1983–today)

p-DISJOINTPATHS has a cubic FPT algorithm: there is a computable function f such that the algorithm runs in time $f(k) \cdot |V(G)|^3$.

But…

$f(k)$ is a huge tower of exponentiations1! 😞

$^1 f(k) \in 2^{2^{2^{\Omega(k)}}}$ from: A Shorter Proof of the Graph Minor Theorem – The Unique Linkage Theorem – (Kawarabayashi, Wollan, STOC 2010)
Parameterized Disjoint Paths Problem

Theorem (Robertson, Seymour 1983–today)

\texttt{p-DISJOINTPATHS} has a cubic \texttt{FPT} algorithm: there is a computable function \(f \) such that the algorithm runs in time \(f(k) \cdot |V(G)|^3 \).

But …

\(f(k) \) is a huge tower of exponentiations\(^1\)!

\[^1\) \(f(k) \in 2^{2^{2^{\Omega(k)}}} \)

\[\text{from: A Shorter Proof of the Graph Minor Theorem – The Unique Linkage Theorem – (Kawarabayashi, Wollan, STOC 2010)}\]
Theorem (Robertson, Seymour 1983–today)

\textsc{p-DisjointPaths} has a cubic \textsc{FPT} algorithm: there is a computable function \(f \) such that the algorithm runs in time \(f(k) \cdot |V(G)|^3 \).

But \ldots

\[
f(k) \text{ is a huge tower of exponentiations}^1 \!
\]

\[
2^{2^{2^{\Omega(k)}}}
\]

\[^1f(k) \in 2^{2^{2^{\Omega(k)}}} \quad \text{from: A Shorter Proof of the Graph Minor Theorem – The Unique Linkage Theorem} \quad \text{– (Kawarabayashi, Wollan, STOC 2010)}
\]
Source of huge $f(k)$

- R&S: Graph Minors I (1983) – Graph Minors XXIII (2010).
- In Graph Minors XXII. Irrelevant vertices in linkage problems:

 If G contains a subdivided grid of size $g(k)$ for some huge function g, then the middle vertex v of the grid is irrelevant to DPP.

- $f(k) \geq g(k)$

Goal: Improve $g(k)$ of Graph Minors XXII.
Source of huge $f(k)$

• R&S: Graph Minors I (1983) – Graph Minors XXIII (2010).
• In Graph Minors XXII. Irrelevant vertices in linkage problems:

 If G contains a subdivided grid of size $g(k)$ for some huge function g, then the middle vertex v of the grid is irrelevant to DPP.

• $f(k) \geq g(k)$

Goal: Improve $g(k)$ of Graph Minors XXII.
Source of huge $f(k)$

- R&S: Graph Minors I (1983) – Graph Minors XXIII (2010).
- In Graph Minors XXII. Irrelevant vertices in linkage problems:

 If G contains a subdivided grid of size $g(k)$ for some huge function g, then the middle vertex v of the grid is irrelevant to DPP.

- $f(k) \geq g(k)$

Goal: Improve $g(k)$ of Graph Minors XXII.
Source of huge $f(k)$

- R&S: Graph Minors I (1983) – Graph Minors XXIII (2010).
- In Graph Minors XXII. Irrelevant vertices in linkage problems:

 If G contains a subdivided grid of size $g(k)$ for some huge function g, then the middle vertex v of the grid is irrelevant to DPP.

- $f(k) \geq g(k)$

Goal: Improve $g(k)$ of Graph Minors XXII.
Source of huge $f(k)$

- R&S: Graph Minors I (1983) – Graph Minors XXIII (2010).
- In Graph Minors XXII. Irrelevant vertices in linkage problems:

 If G contains a subdivided grid of size $g(k)$ for some huge function g, then the middle vertex v of the grid is irrelevant to DPP.

- $f(k) \geq g(k)$

Goal: Improve $g(k)$ of Graph Minors XXII.
Source of huge $f(k)$

- R&S: Graph Minors I (1983) – Graph Minors XXIII (2010).
- In Graph Minors XXII. Irrelevant vertices in linkage problems:

 If G contains a subdivided grid of size $g(k)$ for some huge function g, then the middle vertex v of the grid is irrelevant to DPP.

- $f(k) \geq g(k)$

Goal: Improve $g(k)$ of Graph Minors XXII.
The size $g(k)$ of the grid
The size $g(k)$ of the grid
The size $g(k)$ of the grid
‘It would be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried but only a few successes can be reported’ \(^2\)

Let’s consider planar graphs from now on.

Theorem (Reed, Robertson, Schrijver, Seymour 1991)

On planar graphs: \texttt{p-DISJOINTPATHS} has a linear FPT algorithm:
\[f(k) \cdot |V(G)|. \]

\[\ldots \text{where } f \text{ is a huge computable function. } \]

(plugging in technique of *Graph Minors XXII.*)

‘It would be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried but only a few successes can be reported’

Let’s consider planar graphs from now on.

Theorem (Reed, Robertson, Schrijver, Seymour 1991)
On planar graphs: \(\text{p-DISJOINTPATHS} \) has a linear \(\text{FPT} \) algorithm:
\[
f(k) \cdot |V(G)|.
\]

\[\ldots\text{where } f \text{ is a huge computable function.}\]

(plugging in technique of Graph Minors XXII.)

\(^2\)László Lovász, Graph Minor Theory, 2005.
‘It would be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried but only a few successes can be reported’\(^2\)

Let’s consider planar graphs from now on.

Theorem (Reed, Robertson, Schrijver, Seymour 1991)

On planar graphs: \textsc{p-DisjointPaths} has a linear \textsc{FPT} algorithm:

\[f(k) \cdot |V(G)|. \]

\ldots where \(f\) is a huge computable function. \(\smile\)

(plugging in technique of *Graph Minors* XXII.)

'It would be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried but only a few successes can be reported' \(^2\)

Let's consider planar graphs from now on.

Theorem (Reed, Robertson, Schrijver, Seymour 1991)

On planar graphs: p-DISJOINTPATHS has a linear FPT algorithm:
\[f(k) \cdot |V(G)|. \]

...where \(f \) is a huge computable function. \(\smile\)
(plugging in technique of Graph Minors XXII.)

‘It would be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried but only a few successes can be reported’ \(^2\)

Let’s consider planar graphs from now on.

Theorem (Reed, Robertson, Schrijver, Seymour 1991)

On planar graphs: \(p\text{-DISJOINTPATHS}\) has a linear \(\text{FPT}\) algorithm: \(f(k) \cdot |V(G)|\).

\(\ldots\) where \(f\) is a huge computable function. 😞

(plugging in technique of Graph Minors XXII.)

Irrelevant Vertex

DISJOINTPATHS

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k)$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Definition

For an instance $(G, (s_1, t_1), \ldots, (s_k, t_k))$, we say that a vertex $v \in V(G) \setminus \{ \text{terminals} \}$ is irrelevant, if

$$(G, (s_1, t_1), \ldots, (s_k, t_k)) \text{ is a ‘yes’-instance } \iff (G - v, (s_1, t_1), \ldots, (s_k, t_k)) \text{ is a ‘yes’-instance.}$$
Irrelevant Vertex

DISJOINT PATHS

Input: Graph G, terminals $(s_1, t_1), \ldots, (s_k, t_k)$

Question: Are there k pairwise vertex disjoint paths P_1, \ldots, P_k in G s.t. P_i has endpoints s_i and t_i?

Definition

For an instance $(G, (s_1, t_1), \ldots, (s_k, t_k))$, we say that a vertex $v \in V(G) \setminus \{\text{terminals}\}$ is irrelevant, if

$(G, (s_1, t_1), \ldots, (s_k, t_k))$ is a ‘yes’-instance $\iff (G - v, (s_1, t_1), \ldots, (s_k, t_k))$ is a ‘yes’-instance.
Question

Given: planar G with terminals \((s_1, t_1), \ldots, (s_k, t_k)\).

What is the minimum size \(g(k)\) of a grid in G that guarantees us a vertex \(v\) that is irrelevant for \textsc{DisjointPaths}?
Large grids guarantee irrelevant vertices

Question

Given: planar G with terminals $(s_1, t_1), \ldots, (s_k, t_k)$.

What is the minimum size $g(k)$ of a grid in G that guarantees us a vertex v that is irrelevant for \textsc{Disjoint Paths}?
1. Introduction: Disjoint paths and irrelevant vertices
2. Our results
3. Upper bound in planar graphs
4. Lower bound
5. Conclusion
Upper and lower bound

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.
∃ function $g \in O\left(2^k\right)$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

$g(k) > 2^{k-1} + 1$:
There exists a planar graph G with k pairs of terminals, such that DISJOINT PATHS has a unique solution, and the solution uses all vertices of a $(2^{k-1} + 1) \times (2^{k-1} + 1)$-grid.
Upper and lower bound

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

There exists a function $g \in 2^{O(k)}$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

$$g_{\text{exact}}(k) = 2^k \cdot 16\sqrt{2}k^{3/2}$$

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

There exists a planar graph G with k pairs of terminals, such that \textsc{DisjointPaths} has a unique solution, and the solution uses all vertices of a $(2^{k-1} + 1) \times (2^{k-1} + 1)$-grid.
Upper and lower bound

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

\exists function $g \in 2^{O(k)}$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

$g_{\text{exact}}(k) = 2^k \cdot 16\sqrt{2}k^{\frac{3}{2}}$

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

$g(k) > 2^{k-1} + 1$:

There exists a planar graph G with k pairs of terminals, such that DISJOINTPATHS has a unique solution, and the solution uses all vertices of a $(2^{k-1} + 1) \times (2^{k-1} + 1)$-grid.
Planar DISJOINT PATHS

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

G planar with k pairs of terminals.

There is an $O(|V(G)|^2)$ time algorithm that outputs an induced subgraph G' of G s.t.

- G' is a ‘yes’-instance of DPP iff G' is a ‘yes’-instance of DPP
- $\text{treewidth}(G') \leq 2^{c \cdot k}$

Proof sketch.

For every $v \in V(G)$

- If v in center of a subdivided grid with $> 2^{c \cdot k}$ layers

 $G := G - v$

Return $G' := G$

Corollary (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar DISJOINT PATHS can be solved in time $2^{2^{O(k)}} \cdot |V(G)|^2$.
Planar Disjoint Paths

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

G planar with k pairs of terminals.
There is an $O(|V(G)|^2)$ time algorithm that outputs an induced subgraph G' of G s.t.

- G' is a ‘yes’-instance of DPP iff G' is a ‘yes’-instance of DPP
- $\text{treewidth}(G') \leq 2^{c \cdot k}$

Proof sketch.

For every $v \in V(G)$

If v in center of a subdivided grid with $> 2^{c \cdot k}$ layers

$G := G - v$

Return $G' := G$

Corollary (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar Disjoint Paths can be solved in time $2^{2^{O(k)} \cdot |V(G)|^2}$.
Planar DISJOINT PATHS

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

G planar with k pairs of terminals.

There is an $O(|V(G)|^2)$ time algorithm that outputs an induced subgraph G' of G s.t.

• G' is a 'yes'-instance of DPP iff G' is a 'yes'-instance of DPP
• $\text{treewidth}(G') \leq 2^{c \cdot k}$

Proof sketch.

For every $v \in V(G)$

If v in center of a subdivided grid with $> 2^{c \cdot k}$ layers

$G := G - v$

Return $G' := G$

Corollary (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar DISJOINT PATHS can be solved in time $2^{2^{O(k)} \cdot |V(G)|^2}$.
Outline

1. Introduction: Disjoint paths and irrelevant vertices
2. Our results
3. Upper bound in planar graphs
4. Lower bound
5. Conclusion
Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

\[\exists \text{ function } g \in 2^{O(k)} \text{ such that if } G \text{ contains a subdivided } g(k) \times g(k) \text{ grid, then } G \text{ contains an irrelevant vertex.} \]

Proof Sketch. Assume G is a ‘yes’-instance containing a grid of size \(> 2^{c \cdot k} \). G embedded in the plane.

- Assume that no terminals are inside the grid
- Let \(\mathcal{P} \) be a solution that crosses as few layers of the grid as possible.
- Delete the subgraph of G within the perimeter of the grid, but put the paths in \(\mathcal{P} \) back
Upper bound: Proof Sketch

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

\exists function $g \in 2^{O(k)}$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

Proof Sketch. Assume G is a ‘yes’-instance containing a grid of size $> 2^{c-k}$. G embedded in the plane.

- Assume that no terminals are inside the grid
- Let \mathcal{P} be a solution that crosses as few layers of the grid as possible.
- Delete the subgraph of G within the perimeter of the grid, but put the paths in \mathcal{P} back
Upper bound: Proof Sketch

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

\exists function $g \in 2^{\mathcal{O}(k)}$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

Proof Sketch. Assume G is a ‘yes’-instance containing a grid of size $> 2^{c \cdot k}$. G embedded in the plane.

- Assume that no terminals are inside the grid
- Let \mathcal{P} be a solution that crosses as few layers of the grid as possible.
- Delete the subgraph of G within the perimeter of the grid, but put the paths in \mathcal{P} back
Upper bound: Proof Sketch

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

\exists function $g \in 2^{O(k)}$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

Proof Sketch. Assume G is a ‘yes’-instance containing a grid of size $> 2^{c \cdot k}$. G embedded in the plane.

- Assume that no terminals are inside the grid
- Let \mathcal{P} be a solution that crosses as few layers of the grid as possible.
- Delete the subgraph of G within the perimeter of the grid, but put the paths in \mathcal{P} back
Upper bound: Proof Sketch

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos)

Planar G with k pairs of terminals.

\exists function $g \in 2^{\mathcal{O}(k)}$ such that if G contains a subdivided $g(k) \times g(k)$ grid, then G contains an irrelevant vertex.

Proof Sketch. Assume G is a ‘yes’-instance containing a grid of size $> 2^{c \cdot k}$. G embedded in the plane.

- Assume that no terminals are inside the grid
- Let \mathcal{P} be a solution that crosses as few layers of the grid as possible.
- Delete the subgraph of G within the perimeter of the grid, but put the paths in \mathcal{P} back
Proof Sketch: grid size for irrelevant vertices

- the segments of paths of \mathcal{P} within the perimeter form an outer-planar graph
- show: (a) the number of segment types (colors) is $\leq 4k - 3$,
 (b) there are at most 2^k segments of each type
- (a)+(b): bound on number of segments of \mathcal{P} in the grid
- put the grid back and find \mathcal{P} uses the outer $2^{c\cdot k}$ layers only – avoiding the middle vertex!
Proof Sketch: grid size for irrelevant vertices

- the segments of paths of \mathcal{P} within the perimeter form an outer-planar graph
- show: (a) the number of segment types (colors) is $\leq 4k - 3$, (b) there are at most 2^k segments of each type
- (a)+(b): bound on number of segments of \mathcal{P} in the grid
- put the grid back and find \mathcal{P} uses the outer $2^{c \cdot k}$ layers only – avoiding the middle vertex!
Proof Sketch: grid size for irrelevant vertices

- the segments of paths of \mathcal{P} within the perimeter form an outer-planar graph
- show: (a) the number of segment types (colors) is $\leq 4k - 3$, (b) there are at most 2^k segments of each type
- (a)+(b): bound on number of segments of \mathcal{P} in the grid
- put the grid back and find \mathcal{P} uses the outer $2^{c\cdot k}$ layers only – avoiding the middle vertex!
Proof Sketch: grid size for irrelevant vertices

- the segments of paths of \mathcal{P} within the perimeter form an outer-planar graph
- show: (a) the number of segment types (colors) is $\leq 4k - 3$, (b) there are at most 2^k segments of each type
- (a)+(b): bound on number of segments of \mathcal{P} in the grid
- put the grid back and find \mathcal{P} uses the outer $2^{c\cdot k}$ layers only – avoiding the middle vertex!
Proof Sketch: grid size for irrelevant vertices

- the segments of paths of \mathcal{P} within the perimeter form an outer-planar graph
- show: (a) the number of segment types (colors) is $\leq 4k - 3$, (b) there are at most 2^k segments of each type
- (a)+(b): bound on number of segments of \mathcal{P} in the grid
- put the grid back and find \mathcal{P} uses the outer $2^{c \cdot k}$ layers only – avoiding the middle vertex!
Rerouting for (b)
Rerouting for (b)
Outline

1. Introduction: Disjoint paths and irrelevant vertices
2. Our results
3. Upper bound in planar graphs
4. Lower bound
5. Conclusion
Large grids guarantee irrelevant vertices

Question
Given a planar graph G and terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$, what is the minimum size $g(k)$ of a grid in G that guarantees us a vertex irrelevant for DISJOINTPATHS?

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos, 2011)
$g(k) > 2^{k-1} + 1$:
There exists a planar graph G with k pairs of terminals, such that DISJOINTPATHS has a unique solution, and the solution uses all vertices of a $(2^{k-1} + 1) \times (2^{k-1} + 1)$-grid.
Large grids guarantee irrelevant vertices

Question

Given a planar graph G and terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$, what is the minimum size $g(k)$ of a grid in G that guarantees us a vertex irrelevant for **DISJOINTPATHS**?

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos, 2011)

$g(k) > 2^{k-1} + 1$:

There exists a planar graph G with k pairs of terminals, such that **DISJOINTPATHS** has a unique solution, and the solution uses all vertices of a $(2^{k-1} + 1) \times (2^{k-1} + 1)$-grid.
Large grids guarantee irrelevant vertices

Question

Given a planar graph G and terminals $(s_1, t_1), \ldots, (s_k, t_k) \in V(G)^{2k}$, what is the minimum size $g(k)$ of a grid in G that guarantees us a vertex irrelevant for DISJOINTPATHS?

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos, 2011)

$g(k) > 2^{k-1} + 1$:

There exists a planar graph G with k pairs of terminals, such that DISJOINTPATHS has a unique solution, and the solution uses all vertices of a $(2^{k-1} + 1) \times (2^{k-1} + 1)$-grid.
The lower bound: Proof

Instance of DISJOINTPATHS with \(k = 5 \):
The lower bound: Proof

Instance of \textsc{DisjointPaths} with $k = 5$:
The lower bound: Proof

Instance of DISJOINTPATHS with $k = 5$:

![Diagram showing an instance of DISJOINTPATHS with 5 paths. The diagram includes multiple paths connecting the source and target nodes, each path marked with a different color.](image-url)
Constructing the Example
Constructing the Example
Constructing the Example
Constructing the Example
Proof
Proof
Proof
Proof
Putting things together

Question
Given: planar G, terminals $(s_1, t_1), \ldots, (s_k, t_k)$.
What is the minimum size $g(k)$ of a grid in G that guarantees us a vertex that is irrelevant for DISJOINTPATHS?

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos, 2011)
$2^{k-1} + 1 < g(k) \leq 2^k \cdot 16\sqrt{2}k^{3/2}$.

Corollary
On planar graphs, DISJOINTPATHS can be solved in $2^{O(k)} \cdot |V(G)|^2$.

Best parameter dependency so far!
Question

Given: planar G, terminals $(s_1, t_1), \ldots, (s_k, t_k)$. What is the minimum size $g(k)$ of a grid in G that guarantees us a vertex that is irrelevant for \textsc{DisjoinPaths}?

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos, 2011)

$2^{k-1} + 1 < g(k) \leq 2^k \cdot 16\sqrt{2k^{3/2}}$.

Corollary

On planar graphs, \textsc{DisjoinPaths} can be solved in $2^{2^{O(k)}} \cdot |V(G)|^2$.

Best parameter dependency so far!
Putting things together

Question
Given: planar G, terminals $(s_1, t_1), \ldots, (s_k, t_k)$.
What is the minimum size $g(k)$ of a grid in G that guarantees us a vertex that is irrelevant for DISJOINTPATHS?

Theorem (A., Krause, Kolliopoulos, Lokshtanov, Saurabh, Thilikos, 2011)
\[2^{k-1} + 1 < g(k) \leq 2^k \cdot 16\sqrt{2}k^{3/2}. \]

Corollary
On planar graphs, DISJOINTPATHS can be solved in $2^{2^{O(k)}} \cdot |V(G)|^2$.

Best parameter dependency so far!
Outline

1. Introduction: Disjoint Paths
2. R&S Algorithm – Irrelevant vertices are expensive
3. Price? Upper bound in planar graphs
4. Price? A lower bound
5. Conclusion
Future research:

- what about non-planar graphs?
- is there a faster algorithm for DISJOINTPATHS on planar graphs?
- improve parameter dependency of related algorithms (topological minor test, test for immersions)
Vielen Dank!